SIEMENS

SIMATIC

S7
S7-1200 Programmable controller

System Manual

04/2009

A5E02486680-01

Preface

Product overview

Installation

PLC concepts

Device configuration

Programming concepts

Programming instructions

PROFINET

Point-to-Point (PtP)
communications

Online and diagnostic tools

Technical specifications

Calculating a power budget

Order numbers

O W |» |© (o N oo o ([w |

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent
damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert
symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are
graded according to the degree of danger.

A\DANGER
indicates that death or severe personal injury will result if proper precautions are not taken.

AAWARNING
indicates that death or severe personal injury may result if proper precautions are not taken.

A\CAUTION
with a safety alert symbol, indicates that minor personal injury can result if proper precautions are not taken.

CAUTION
without a safety alert symbol, indicates that property damage can result if proper precautions are not taken.

NOTICE

indicates that an unintended result or situation can occur if the corresponding information is not taken into
account.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will
be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to
property damage.

Qualified Personnel

The device/system may only be set up and used in conjunction with this documentation. Commissioning and
operation of a device/system may only be performed by qualified personnel. Within the context of the safety notes
in this documentation qualified persons are defined as persons who are authorized to commission, ground and
label devices, systems and circuits in accordance with established safety practices and standards.

Proper use of Siemens products

Trademarks

Note the following:

AAWARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical
documentation. If products and components from other manufacturers are used, these must be recommended
or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and
maintenance are required to ensure that the products operate safely and without any problems. The permissible
ambient conditions must be adhered to. The information in the relevant documentation must be observed.

All names identified by ® are registered trademarks of the Siemens AG. The remaining trademarks in this
publication may be trademarks whose use by third parties for their own purposes could violate the rights of the
owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software
described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the
information in this publication is reviewed regularly and any necessary corrections are included in subsequent
editions.

Siemens AG Ordernumber: 6ES7 298 8FA30 8BHO Copyright © Siemens AG 2009.
Industry Sector ® 03/2009 Technical data subject to change
Postfach 48 48

90026 NURNBERG

GERMANY

Preface

Purpose of the manual

The S7-1200 series is a line of programmable logic controllers (PLCs) that can control a
variety of automation applications. Compact design, low cost, and a powerful instruction set
make the S7-1200 a perfect solution for controlling a wide variety of applications. The S7-
1200 models and the Windows-based programming tool give you the flexibility you need to
solve your automation problems.

This manual provides information about installing and programming the S7-1200 PLCs and
is designed for engineers, programmers, installers, and electricians who have a general
knowledge of programmable logic controllers.

Required basic knowledge

To understand this manual, it is necessary to have a general knowledge of automation and
programmable logic controllers.

Scope of the manual

This manual is valid for STEP 7 Basic V10.5 and the S7-1200 product family. For a complete
list of the S7-1200 products described in this manual, refer to the technical specifications
(Page 283).

Certification, CE label, C-Tick, and other standards

Refer to the technical specifications (Page 283) for more information.

Service and support

In addition to our documentation, we offer our technical expertise on the Internet at:

http://www.siemens.com/automation/support-request

Contact your Siemens distributor or sales office for assistance in answering any technical
questions, for training, or for ordering S7 products. Because your sales representatives are
technically trained and have the most specific knowledge about your operations, process
and industry, as well as about the individual Siemens products that you are using, they can
provide the fastest and most efficient answers to any problems you might encounter.

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

http://www.siemens.com/automation/support-request

Preface

S7-1200 Programmable controller
4 System Manual, 04/2009, ASE02486680-01

Table of contents

[(=] =T = U PTYURTOPR RPN - |
1 ProdUCE OVEIVIBW ... e ie et e e e e s e e e e se e e e ss e e e s s e e s sessseese s meeessame e e s s amn e smreeesssnnesssnsnnessnnns 9
1.1 Introducing the S7-1200 PLC......ooi oo e e e e e e e e e s e e e e e e e e ennree sennnnees 9
1.2 ST To =T oo = 14 [0TSR 11
1.3 SIGNAI MOTUIES ...ttt ettt e e s aab e e e st et e e e abbe e eeeesanteeeeaas 11
1.4 CommuNICatioN MOAUIES ..ottt e e e e et e e e e e e e e e e e e e e eeeeeens 12
1.5 TIA POrtal SOfIWEAIE ... et e e e e e e e e e e e e s e sannnnneeeeeens 12
1.5.1 Different views to make the Work €asier.............cccoi i 13
1.5.2 HEIP WHhEN YOU NEEA it ..o e e e e s e et e e e e s ereaaeeeanns 14
1.6 DISPIAY PANEIS ...ttt e e et ee e e e e e e aaete e nhaereeeaeeaeann 17
2 L3 2= 1 =1 (o o PP 19
21 Installation and removal ProCEAUIES...........cooiiiiiiiiiiiiie e sveee e see e 22
211 Installing and removing the CPU ... e 24
21.2 Installing and removing a signal MOAUIE............coo i s 2D
21.3 Installing and removing a communication Module.............cooiiiiiiiiiiiiieieeeee e 21
21.4 Installing and removing @ Signal boardc.ooiiiiiiiiiii e e 28
21.5 Removing and reinstalling the S7-1200 terminal block connector.............ccccococeiiiiiiinii .29
22 WIRNG QUIAEIINEScoiiiiii ettt st e e s sbe e e s sntee e s s e e sneeeeesnneee s D0
3 g I O o3 V- o) - 35
3.1 Execution of the USEr Programi...........cooi ittt e e s snteee e eee e e e 3D
3.1.1 Operating modes Of the CPU........cooociiiiiiiiec et ee e see e ee e seae e snnneeeesnneenneeeeen D T
3.1.2 Event execution priorities and QUEUING -.....ccooii i e e eeee e 40
3.1.3 L0 U 03T T o 1 o] o PR 45
3.1.4 Password protection for the S7-1200 CPU..........oo it e e e snnnnaeee s 48
3.2 Data storage, memory areas and addreSSing..........ccoooeviieieieeiie e 49
3.3 I F= = I 47 = 3OO PUPUPPURUURPRRE o
3.4 Saving and restoring MEMIOIYcoiiiiiii ittt e e ssre e e s snneeeesnneee eeeesn DT
3.4.1 Understanding how the S7-1200 saves and restores data.............cccccooiiiiiiiiiiiciiee 07
3.4.2 Using the memory card as a "Program" Cardcccoieoiiieeiiiiiee e D8
3.4.3 Using the memory card as a "Transfer” Card..............cuuveiiiiii i 60
4 Device CONFIGUIALIONcooe e ceieee e e e e e e e e e s e e e e s e e e e s sane e e s esne e s s me e esme e e reessamneeesanrnenssnn 83
4.1 [T 11T = T 1 U SRR TRS 64
4.2 Configuring the operation of the CPUooiiiiiiii e 65
4.3 Adding modules to the configuration ... e 66
4.4 Configuring the parameters of the MOAUIES.............ccuviiiiiii e 67
4.5 Creating @ Network CONNECHIONceiiiii e e e a e eeea s 69
4.6 Configuring @ permanent [P @ddreSsSc.uueiiiiiiiieiiciiie et e e ene 70
S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01 5

Table of contents

Programming CONCEPLScoiiueieiieiceeeiiereee e e s e e s e e es e e e s s e e e e s s e e e e e sase e e s sennee s sessseeensnreensan sasnnneessnnnensans 73
5.1 Guidelines for Program ESIGNeii i e 73
5.1.1 SruCtUring YOUT USEI PrOGIAM ... uviiie ittt ettt ettt e et e e ettt e e e b e e e enbe e e e ennee e s e e eennee 74
51.2 Using blocks to Structure your Programooc.eiei o iiieiee e e 75
5.1.2.1 Organization BIOCK (OB).........ccuuiiiiiiei ettt e e e s e e e e e e st re e e e e e s e sasnreeaaee reneaeaeeannns 76
Tt I 0 oo 11T o I (L) PR SPRR 78
5.1.2.3 FUNCHON DIOCK (FB) ...ttt ettt ettt ettt et e e sbee shreeeesneeeeeaas 78
5.1.2.4 Data BIOCK (DB).....citiieeeiiiieeectiiee e eeiieee e et ettt e e e steee e e sttt e e e sataeeesasaeeeesntaeaessteeessnseeaeans seassaeessnseneenns 79
51.3 Selecting the programming laNQUAGEoocueiiiiiiiiiie e e e 30
5.2 (0707 o)V o] o) (=Tox 1] o ISP PERRRR 32
5.3 Debugging and testing the program.......... s 33
Programming iNSrUCHONSoiiciie et e e s eme e e e s e e sne e e s ense e s seme e e nas se e e e nenneeneans 85
6.1 BaSIiC INSIIUCHIONSoiiii et e e e e e e e e e e e e e e e e nneees 35
6.1.1 2) o T o SRRSO 35
6.1.1.1 Set and resSet iNSIrUCHIONS.eiieiiiee e e e e e e e e e s e e e ee e neeeeeeeeeannns 37
6.1.1.2 Positive and negative edge iNSITUCIONS..........cooiiiiiiii e e 39
6.1.2 I 0=] £ PO PPRRRP 91
6.1.3 L7010 01 (=] < PSSR 94
6.1.3.1 CTRL_HSC INSIIUCHION ..ottt e e e e e e e e e e e e eeeeaaeeaanns 97
6.1.4 LO70] 0 0] 71 (= TP PP 99
6.1.5 = 11 RSP 101
00 I8 Tt B |V (@ T I 1= {0 o o SO RR 102
6.1.6 01 PSP URPT P 108
6.1.6.1 SWaP INSITUCHON ... et e e e e et e e e e e e e et 2 e e e ennneeeeeeaeas 112
6.1.7 L7 0] 0 1= o USSR 113
6.1.7.1 Scale and normalize iNSITUCLIONScooiiiiiiiie e seeeeas 115
6.1.8 e oTe =T g TNt o1 1 (o] 1 116
6.1.9 [IoTo Ter=1 o] o1=T =1 (1] o I PP 118
6.1.10 Shift and ROTALE e e e e e e e ennee e e nneeeeeea s 122
6.2) (= T L= T 1 (4 0T o 124
6.2.1 Clock and calendar INSIIUCHIONSooooeiiiiiie e e e e e e e e e e e e 124
6.2.2 String and character iNStrUCIONS ..o e 128
6.2.2.1 String CONVErSIiON INSITUCHIONScooiiiiiiii i e e e eeeanneeas 128
6.2.2.2 String operation iNSITUCHONS.cociiiiiiiiee e et e e eeeesneeeas 137
6.2.3 Program control iINSrUCHIONSoiiiiiiiiiie e e 146
6.2.3.1 Reset scan cycle watchdog iNSTFUCLIONoocuuiii i e 146
6.2.3.2 StOp SCAN CYCIE INSIIUCTION........uiiiiiii e e e e e e s e e e e e e s e e e e sanraneeeaens 147
6.2.3.3 Get ErTOr iNSIIUCTIONS ...cooieiiie ettt et e sttt e et e e st e e e snee saneeeesanneeeas 147
6.2.4 CommuNICatioNS INSITUCHIONScoiiiiiiii et e et e e e st e e e snteee e eeeeen 151
6.2.4.1 Open Ethernet CommUNICAtION.........ooiiiieii e e 151
6.2.4.2 Point-to-Point iNSIIUCLIONS ... e e eeees 164
6.2.5 INEEITUPE INSIFUCTIONS ... e et e e e e e 165
6.2.5.1 Attach and detach iNSIMUCHIONSuuiiiiiiii e e 165
6.2.5.2 Start and cancel time delay interrupt iNStruCtioNScocoiiiiiiiie e 168
6.2.5.3 Disable and Enable alarm interrupt inStructionsccccooiiiiii 170
6.2.6 1 oo o1 1 o] PR 171
6.2.7 1Y/ T} Te] gl toT g (o) T aT=Y i (U Tox (o] o <SS 171
6.2.8 PUISE INSITUCTIONeiiiie e ettt e e e e e e nae e e e nnees 172
6.2.8.1 CTRL_PWM INSIIUCTIONeiiiiiiiie ettt e e st e e st e e s naae e e ssaeee e aeeannneeas 172
6.3 Global [Ibrary iINSIUCHONScoiii i e e e e e e e e e aare e eennnrees 175
6.3.1 L3 SRR 175
6.3.1.1 Requirements for using the USS protoCol............ccoiiiiiiiiiiiii e 175
S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

Table of contents

6.3.1.2 USS_DRV INSITUCHIONeiiiiiiiiie ittt ettt ettt e sttt e e sttt e e e st e e e entaeeeesnteeeess e esnteeeenanes 177
6.3.1.3 USS_PORT INSIIUCHION ...coiiiiiiiiiiiiiie ittt ettt ettt e e st e e e sae e sateeeeeanee 179
6.3.1.4 USS_RPM INSIIUCHION ...coveiiiee et e e e e et e e e e e e e e e e e aab e e e e eeeaeeeeeeeesnes 180
B6.3.1.5 USS_WPM INSITUCHION.....cevteeeeeie et e e e e e et e e e e e e e e e e et aa e e e eeeaeeeeeeeesnes 182
6.3.1.6 USS SAtUS COUESoouiiiiiiiiiii ettt e e eneeeenee e 183
6.3.2 (O] =] O 1 T ST PRPR 184
6.3.2.1 MB_COMM_LOAD ...ttt ettt et e e e e e ae e e et e e ateeeasseeamteeamseeaseeaseeeanseeannereeenneean 184
B.3.2.2 IMB_IMASTER ... ittt ettt et e e et eeaee e e ate e et e e e seeeeteeeaneeeeneeeanee eeeaneeeaneeans 187
B.3.2.3 IMB_SLAVE ...ttt ettt ettt e ee e e te e et et e nneeeaneeeanteeann sneeeenneeeaneeans 198
7 g 0 L | TS 207
71 Communication with @ programming AEVICEccuiiiiiiiiiie e 208
711 Establishing the hardware communications connection..............cccccooiiiiii 209
71.2 ConfiguriNg the AEVICESeiiiiiiie e e 209
71.3 Assigning Internet Protocol (IP) addresSsescoccveiiiiiiiiiieiiniiie e enieee e 210
7.1.3.1 Assigning IP addresses to programming and network deviCes..........ccoceveiiieniinin e 210
7.1.3.2 Assigning a temporary IP address ONlNEouuiiiiiiiei i e e a e 213
7.1.3.3 Configuring a permanent IP addreSscccuuiiiiiiiiiee it et e e e sreeeesee snes 218
71.4 Testing the PROFINET NEIWOIKcoouiiiiiiiiii et e 220
7.2 HMI-t0-PLC COMMUNICATIONeiiiiiiiii ittt e 222
7.2.1 Configuring the logical network connections between an HMl and a CPUcccceeeeeee 223
7.3 PLC-t0-PLC COMMUNICALION ..ottt e 224
7.3.1 Configuring the logical network connections between two CPUs............cccocciiiiiiiiiiiee e, 226
7.3.2 Configuring transmit (send) and receive parameters..........ccuveviieeeiiiiie e 226
7.3.2.1 Configuring the TSEND_C instruction transmit (send) parameters............ccccoceevieiiniiee e, 227
7.3.2.2 Configuring the TRCV_C instruction receive parameters..........cccoocueveiiieieiiieee e 231
7.4 Reference INfOrmationcocuii i e s 235
7.41 Locating the Ethernet (MAC) address onthe CPU............coooiiiiiie e 235
7.4.2 Configuring Network Time Protocol synchronization...............ooceviiiiiie e 236
8 Point-to-Point (PtP) cOMMUNICAtIONScceiieiee e s e e e e s 239
8.1 Using the RS232 and RS485 communication modules...............ueivieiiiiciiiinie e 239
8.2 Configuring the communiCation POMSooiiiiiiiii e e 240
8.3 Managing flOW CONTIOL ..o e e e e e e e et e e e e e eseeeaaaeaaan 241
8.4 Configuring the transmit (send) and receive parametersccccovcieeiiiiie e 242
8.5 Programming the PtP commMUNICAtIONScooiiiiiiiiiii e 248
8.5.1 PoIlING @rChiteCUrecooiiiiii et e 248
8.6 PoiNt-to-Point iINSrUCHIONSeeiiii e e 250
8.6.1 Common parameters for Point-to-Point inStruCtionS...........ccoveiiiiiiiiiiec e 250
8.6.2 PORT_CFG INSIUCHION ...ttt ettt e 252
8.6.3 SEND_CFG INSIIUCHON ...ttt ettt e et e e e st e e e e nte e e e e e e enneeas 254
8.6.4 RCV_CFG INSIUCHON...c.eeiie it ettt e e e e e rnneeeeas 255
8.6.5] =1 VT el I 1 1 (U o T o PR *) o Y24
8.6.6 ORI ST] {0 [1T o 264
8.6.7 RCV_RST INSIIUCHION ...ttt e 265
8.6.8 SGN_GET INSIIUCTION....cei ittt et et e e e et e e e st e e e et e e e e snteee e eneee s eeeeanneeas 266
8.6.9 SGN_SET INSIIUCHONeeiiiiiiiie et e e s ssnes nnee e e e O
8.7 o] £ TP PSPPSR PUPPPRPTPRR 268

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 7

Table of contents

9 (O3] [10TY=TaTo lo [E=To g ToT i o 38 (o o) I PP 273
9.1 SHALUS LEDS ..ottt ettt e oo ettt e e e e e et e ee e e e e e e e neneeeeeeeaaannneeeaaerneeeaaeeaanns 273
9.2 Going online and connecting 10 @ CPUooi i 275
9.3 Setting the IP address and time Of dayocuiiiiiiiiiii e 276
9.4 CPU operator panel for the onling CPU............oooiiiiiiiiie e 277
9.5 Monitoring the cycle time and MemOrY USAQEooo i 277
9.6 Displaying diagnostic events in the CPU ... 278
9.7 Watch tables for monitoring the user program.............ccoooiiiiiiiiii e 278
A Technical SPeCIfiCAtiONScocc. e e e e s e e e e s reee e e e e snmeeee e s 283
A.1 General Technical SPeCifiCatioNS...........uuuiiiii i e rree s 283
A2 (0] U LTS PTOU PP RPPRPI 288
A.2.1 CPU 1211C SPECIfICAtIONS.....uueiiiie it e e e et e e e e e e et e e e enas 288
A2.2 CPU 1212C SPeCIfiCatiONS......eeeiiieeeiiie e e e e e e e e e e e e e e e 293
A.2.3 CPU 1214C SPeCIfiCatioNS.......ciiiiiiiii i eee e 298
A.3 Digital signal MOAUIES (SIMS)........uiiiiiiiii it e e e 303
A.3.1 SM 1221 Digital Input SPecCifiCatioNsccoiieiiiiii i 303
A.3.2 SM 1222 Digital Output SpecCifiCatioNS..........ccuueiiiiiiiiiie e s 305
A.3.3 SM 1223 Digital Input/Output Specifications............co.eeiiiiiiii e 307
A4 Analog signal MOAUIES (SIMS)eeiiiiiieiiiee e e e 310
A.4.1 SM 1231, SM 1232, SM 1234 Analog Specificationscccoueeeieeeiiieee e 310
A5 ST (o ez 1 o o= 1o S (5] = 1= I PSSR 316
A.5.1 SB 1223 2 X 24 VDC Input/ 2 X 24 VDC Output Specifications............ccceevieeeiiciee e 316
A.5.2 SB 1232 1 Analog Output SPeCifiCationsSccoiiuiiiiiiiiiiiie e 318
A.6 Communication MOAUIES (CIMS)......ccoiiiiiiiiiii e 320
A.6.1 CM 1241 RS485 SPECIfiCatiONScoeiiiiiiiiiiiii et e e e 320
A6.2 CM 1241 RS232 SPECIfICAtIONSeieieiiie ettt ee e e e e ae e e e e e senrrreeeaeees 321
A7 SIMATIC MEMOIY CAIAS........uviiiiiiee e ittt e e e e et e e et e e e e e e st e e e e e e e esabaaeeaeeeeassntaeeeaesaaans eeeaan 321
A.8 INPUL SIMUIAEOIS ...t e taaanannnnnans 322
B 0= (o1 U] E= L o JE= W oT0)TV =Y ol o 10 o[7= PR 325
B.1 Calculating a sample poOWer reqUIrEMENT...........coiuiiiai i 327
B.2 Calculating your pOWETr reqQUIFEMENTcooiiiiiiiiiie et 328
C 1O (o (= g T g o7 = PR S 329
0 [PP 331

S7-1200 Programmable controller
8 System Manual, 04/2009, ASE02486680-01

Product overview 1

1.1 Introducing the S7-1200 PLC

The S7-1200 programmable logic controller (PLC) provides the flexibility and power to
control a wide variety of devices in support of your automation needs. The compact design,
flexible configuration, and powerful instruction set combine to make the S7-1200 a perfect
solution for controlling a wide variety of applications.

The CPU combines a microprocessor, an integrated power supply, input circuits, and output
circuits in a compact housing to create a powerful PLC. After you download your program,
the CPU contains the logic required to monitor and control the devices in your application.
The CPU monitors the inputs and changes the outputs according to the logic of your user
program, which can include Boolean logic, counting, timing, complex math operations, and
communications with other intelligent devices.

Several security features help protect access to both the CPU and the control program:

e Every CPU provides password protection that allows you to configure access to the CPU
functions.

® You can use "know-how protection" to hide the code within a specific block. See the
"Programming concepts (Page 82)" chapter for details.

The CPU provides a PROFINET port for communication over an PROFINET network.
Communication modules are available for communicating over RS485 or RS232 networks.

Status LEDs for the on-board 1/O

Status LEDs for the operational state of the CPU
PROFINET connector

Memory card slot (under door)

®©@© 00

Removable user wiring connector

The different CPU models provide a diversity of features and capabilities that help you create
effective solutions for your varied applications. For detailed information about a specific
CPU, see the technical specifications (Page 283).

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 9

Product overview

1.1 Introducing the S7-1200 PLC

Feature CPU 1211C CPU 1212C CPU 1214C

Physical size (mm) 90 x 100 x 75 110 x 100 x 75

User memory

e Work memory o 25 Kbytes e 50 Kbytes

e Load memory e 1 Mbyte e 2 Mbytes

e Retentive memory e 2 Kbytes e 2 Kbytes

Local on-board 1/0

o Digital e 6 inputs/4 outputs e 8 inputs/6 outputs e 14 inputs/10 outputs

e Analog e 2inputs e 2inputs e 2inputs

Process image size 1024 bytes (inputs) and 1024 bytes (outputs)

Signal modules expansion None ‘ 2 ‘ 8

Signal board 1

Communication modules 3 (left-side expansion)

High-speed counters 3 4 6

e Single phase e 3at100 kHz e 3at100 kHz e 3at100 kHz
1 at 30 kHz 3 at 30 kHz

e Quadrature phase e 3at80kHzZ e 3at80kHz e 3at80kHz
1 at 20 kHz 3 at 20 kHz

Pulse outputs 2

Memory card

SIMATIC Memory card (optional)

Real time clock retention time

10 days, typical / 6 day minimum at 40 degrees

PROFINET

1 Ethernet communications port

Real math execution speed

18 pslinstruction

Boolean execution speed

0.1 ps/instruction

The S7-1200 family provides a variety of signal modules and signal boards for expanding the
capabilities of the CPU. You can also install additional communication modules to support
other communication protocols. For detailed information about a specific module, see the

technical specifications (Page 283).

Module Input only Output only Combination in/out

Signal module | Digital 8xDCIn 8 x DC Out 8 x DC In/8 x DC Out

(SM) 8 x Relay Out 8 x DC In/8 x Relay Out
16 xDC In 16 x DC Out 16 x DC In/16 x DC Out

16 x Relay Out 16 x DC In/16 x Relay Out
Analog 4 x Analog In | 2 x Analog Out 4 x Analog In/2 x Analog Out

Signal board Digital - - 2 xDC In/2 x DC Out

(SB) Analog - 1 x Analog Out -

Communication module (CM)

o RS485

¢ RS232

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Product overview
1.2 Signal boards

1.2 Signal boards

A signal board (SB) allows you to add 1/0 to your CPU. You can add one SB with either
digital or analog I/0. A SB connects on the front of the CPU.

e SB with 4 digital I/O (2 x DC inputs and 2 x DC outputs)
e SB with 1 analog output

@ Status LEDs on the SB
® Removable user wiring connector

1.3 Signal modules

You can use signal modules to add additional functionality to the CPU. Signal modules
connect to the right side of the CPU.

Status LEDs for the I/O of the signal module
Bus connector

® 00

Removable user wiring connector

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01 11

Product overview

1.4 Communication modules

14 Communication modules

The S7-1200 family provides communication modules (CMs) for additional functionality to
the system. There are two communication modules: RS232 and RS485.

® The CPU supports up to 3 communication modules

® Each CM connects to the left side of the CPU (or to the left side of another CM that is
connected to the CPU)

@ Status LEDs for the communication module
® Communication connector

1.5 TIA Portal software

12

The Totally Integrated Automation (TIA) Portal software provides a user-friendly environment
to develop, edit, and monitor the logic needed to control your application.

The TIA Portal provides the tools for managing and configuring all of the devices in your
project, such as PLCs and HMI devices. As a component of the TIA Portal, STEP 7 Basic
provides two programming languages (LAD and FBD) for convenience and efficiency in
developing the control program for your application. The TIA Portal also provides the tools
for creating and configuring the HMI devices in your project.

To help you find the information you need, the TIA Portal provides an extensive online help
system. The TIA Portal provides two different views of the toolset: a project-oriented view
(Portal view) and a task-oriented set of portals (Portal view).

To install the TIA Portal, insert the CD into the CD-ROM drive of your computer. The
installation wizard starts automatically and prompts you through the installation process.
Refer to the Readme file for more information about installing the TIA Portal.

Note

To install the TIA Portal software on a PC running Windows 2000, Windows XP, or Windows
Vista operating system, you must log in with Administrator privileges.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Product overview
1.5 TIA Portal software

1.5.1 Different views to make the work easier

To help increase your productivity, the Totally Integrated Automation Portal provides two
different views of the toolset: a task-oriented set of portals that are organized on the
functionality of the tools (Portal view), or a project-oriented view of the elements within the
project (Project view). Choose which view helps you work most efficiently. With a single click,
you can toggle between the Portal view and the Project view.

The Portal view provides a
functional view of the project
tasks and organizes the functions % Start
of the tools according to the
tasks to be accomplished, such
as creating the configuration of
the hardware components and
networks.

You can easily determine how to
proceed and which task to
choose.

The Project view provides access
to all of the components withina it s «oxaim. s pama: ™ el
project. With all of these B e R
components in one place, you
have easy access to every
aspect of your project. The
project contains all of the
elements that have been created
or completed.

o) Pegaatien & imin 5 (Rapuenes |9

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 13

Product overview

1.5 TIA Portal software

1.6.2 Help when you need it

Finding answers to your questions quickly

To help you resolve issues quickly and efficiently, the TIA portal provides intelligent point-of-
need assistance:

® An entry field provides "rollout" help to assist you with entering the correct information
(valid ranges and type of data) for that field. For example, if you were to enter an invalid
value, a message text box would roll out to provide the range of valid values.

o Some of the tool tips in the interface (such as for the instructions) "cascade" to provide
additional information. Some of the cascading tool tips link to specific topics in the online
information system (online help).

In addition, the TIA portal has a comprehensive information system that fully describes the
functionality of the SIMATIC tools.

Rollout help and cascading tool tips

Entry fields of various dialogs and task cards provide
feedback in the form of a message box that rolls out and
informs you about the range or types of data required.

The elements of the software interface provide tool tips to w Online status
explain the functionality of the element. Some of the Shows the online
elements, such as the "Open" or "Save" icons, require no status of the
additional information. However, some of the elements associated hardware

provide a mechanism for displaying additional description object.
Determination of

about the element. This additional information "cascades" in e status and
a box from the tool tip. (A black triangle alongside the tool tip | display using
signifies that more information is available.) Zmbes

Hovering over an element of the software interface displays the tool tip. To display additional
information, simply hover your cursor over the tool tip. Some of the cascading tool tips also
provide links to related topics in the information system. Clicking the link displays the specific
topic.

Information system

The TIA portal provides a comprehensive online information and help system that describes
all of the SIMATIC TIA products that you have installed. The information system also
includes reference information and examples. To display the information system, choose
from the following access points:

® From the Portal view, select the Start portal and click the "Help" command.
® From the Project view, select the "Show help" command in the "Help" menu.
® From a cascading tool tip, click a link to display more information about that topic.

The information system opens in a window that does not obscure the work areas.

S7-1200 Programmable controller
14 System Manual, 04/2009, ASE02486680-01

Product overview

1.5 TIA Portal software

Click the "Show/hide contents" button on the information system to display the contents and
undock the help window. You can then resize the help window. Use the "Contents" or
"Index" tabs to search through the information system by topic or by key word.

Help window (default) Help window with contents displayed
Siemons Information Syst... - O X Siemoens Information ‘.-_\ru:_-m
i+ R
[Showdhide table of contents
Corterts | Indes | Seach| Favostes |

- ! Fesdme
m ¥ ! Enzlallyen m

M Geiirg Stwed
Getting Started s M Wringchuction ko the TIA Portal Getting Startod

i M Eding projch
ity ocdupCtion to the TRA Portsl # M Corfauang devices ard rwtworks Introdhaction o the: TIA Portal

M Progammng a PLE
Working projcts o I Veusioe procesie: [rn— projects

ph . ! Wawey pondiree arnd chagrsoshc © Puncborn oo

* ! Dlorsay
Configuring Dardces & [Configuring Divices & t
Networks s Metworks O
PLC o oo adiimiiig & PLC programering

By Ny
uqm:m Using Omline & Diagnosics
; 2 -

Glossary Glossary

1] |+

Note

If the TIA Portal application is maximized, clicking the "Show/hide contents" button does not
undock the help window. Click the "Restore down" button on the TIA Portal to undock the
help window. You can then move and resize the help window.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 15

Product overview

1.5 TIA Portal software

Printing topics from the information system
To print from the information system, click the "Print" button on the help window.

16

The "Print" dialog allows you to select the topics to print. Make certain that the panel displays
a topic. You can then select any other topic to print. Click the "Print" button to send the

selected topics to your printer.

LA -
S e The basics of projects "
B ey
@ el e T e iyt
w1 ey B B S B W TR I I R S I P R i
— o i nalen e Sas e shecied B o8 i
A e e I e T e LT Lt T
o By pagey & PR g 1R | PR P S T
I —— & Frem-gegmmreyg ige e anen
[T —
o ey iy Frojedl hsrirly
L . el [L o L L e e L e e
b iy g b B iy e g |
B il gk i an B P pespied bny by el 58 B i g Senn gmey m ey ot
B Permy e - el d el o Lh
B gy prparis g o g et gl s g0 B TS Y SR e e et
| iy el gl = e, |
b ey s mme—
e
By e s b
B ey e
L S ———
"

S7-1200 Programmable controller
System Manual, 04/2009, A5SE02486680-01

Product overview
1.6 Display panels

1.6 Display panels

As visualization becomes a standard component for most machine designs, the SIMATIC
HMI Basic Panels provide touch-screen devices for basic operator control and monitoring
tasks.

Feature KTP1000 Basic color TP1500 Basic color
Display TFT, 256 colors TFT, 256 colors

e Size e 104" e 15.0"

e Resolution e 640 x480 o 1024 x 768
Control elements Touch screen + 8 tactile keys Touch screen
Protection rating IP65 IP65

Interface PROFINET PROFINET
Functionality

e Tags o 256 o 256

e Process screens e 50 e 50

e Alarms e 200 e 200

e Trend curves e 25 e 25

Dimensions (mm)

e Housing front (W x H x D) e 335x275x61 e 400 x 310 x x60
e Mounting cut-out (W x H) e 310x248 e 367 x289

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 17

Product overview

1.6 Display panels

S7-1200 Programmable controller
18 System Manual, 04/2009, ASE02486680-01

Installation 2

The S7-1200 equipment is designed to be easy to install. You can install an S7-1200 either
on a panel or on a standard rail, and you can orient the S7-1200 either horizontally or
vertically. The small size of the S7-1200 allows you to make efficient use of space.

A WARNING

The SIMATIC S7-1200 PLCs are Open Type Controllers. It is required that you install the
S7-1200 in a housing, cabinet, or electric control room. Entry to the housing, cabinet, or
electric control room should be limited to authorized personnel.

Failure to follow these installation requirements could result in death, severe personal injury
and/or property damage.

Always follow these requirements when installing S7-1200 PLCs.

Separate the S7-1200 devices from heat, high voltage, and electrical noise

As a general rule for laying out the devices of your system, always separate the devices that
generate high voltage and high electrical noise from the low-voltage, logic-type devices such
as the S7-1200.

When configuring the layout of the S7-1200 inside your panel, consider the heat-generating
devices and locate the electronic-type devices in the cooler areas of your cabinet. Reducing
the exposure to a high-temperature environment will extend the operating life of any
electronic device.

Consider also the routing of the wiring for the devices in the panel. Avoid placing low-voltage
signal wires and communications cables in the same tray with AC power wiring and high-
energy, rapidly-switched DC wiring.

Provide adequate clearance for cooling and wiring

S7-1200 devices are designed for natural convection cooling. For proper cooling, you must
provide a clearance of at least 25 mm above and below the devices. Also, allow at least 25
mm of depth between the modules and the inside of the enclosure.

A\ caution

For vertical mounting, the maximum allowable ambient temperature is reduced by 10
degrees C. Orient a vertically mounted S7-1200 system so that the CPU is at the low end of
the assembly.

When planning your layout for the S7-1200 system, allow enough clearance for the wiring
and communications cable connections.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 19

Installation

1.6 Display panels

Power budget

20

o

@ Side view ® Vertical installation
® Horizontal installation @ Clearance area

Your CPU has an internal power supply that provides power for the CPU, the signal
modules, signal board and communication modules and for other 24 VDC user power
requirements.

Refer to the technical specifications (Page 283) for information about the 5 VDC logic budget
supplied by your CPU and the 5 VDC power requirements of the signal modules, signal
board, and communication modules. Refer to the "Calculating a power budget" (Page 325) to
determine how much power (or current) the CPU can provide for your configuration.

The CPU provides a 24 VDC sensor supply that can supply 24 VDC for input points, for relay
coil power on the signal modules, or for other requirements. If your 24 VDC power
requirements exceed the budget of the sensor supply, then you must add an external 24
VDC power supply to your system. Refer to the technical specifications (Page 283) for the 24
VDC sensor supply power budget for your particular S7-1200 CPU.

If you require an external 24 VDC power supply, ensure that the power supply is not
connected in parallel with the sensor supply of the CPU. For improved electrical noise
protection, it is recommended that the commons (M) of the different power supplies be
connected.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Installation
1.6 Display panels

A WARNING

Connecting an external 24 VDC power supply in parallel with the 24 VDC sensor supply
can result in a conflict between the two supplies as each seeks to establish its own
preferred output voltage level.

The result of this conflict can be shortened lifetime or immediate failure of one or both
power supplies, with consequent unpredictable operation of the PLC system. Unpredictable
operation could result in death, severe personal injury and/or property damage.

The DC sensor supply and any external power supply should provide power to different
points.

Some of the 24 VDC power input ports in the S7-1200 system are interconnected, with a
common logic circuit connecting multiple M terminals. For example, the following circuits are
interconnected when designated as "not isolated" in the data sheets: the 24 VDC power
supply of the CPU, the power input for the relay coil of an SM, or the power supply for a non-
isolated analog input. All non-isolated M terminals must connect to the same external
reference potential.

AWARNING

Connecting non-isolated M terminals to different reference potentials will cause unintended
current flows that may cause damage or unpredictable operation in the PLC and any
connected equipment.

Failure to comply with these guidelines could cause damage or unpredictable operation
which could result in death or serve personal injury and/or property damage.

Always ensure that all non-isolated M terminals in an S7-1200 system are connected to the
same reference potential.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 21

Installation
2.1 Installation and removal procedures

2.1 Installation and removal procedures

Mounting dimensions (mm)

116

+— 75
S$7-1200 Devices Width A Width B
CPUs: CPU 1211C and CPU 1212C 90 mm 45 mm
CPU 1214C 110 mm 55 mm
Signal modules: 8 and 16 point DC and Relay (81, 161, 8Q, 16Q, 81/8Q) 45 mm 22.5 mm
2 and 4 point Analog (4Al, 4Al/4AQ, 2AQ)
161/16Q Relay (161/16Q) 70 mm 35 mm
Communication modules: CM 1241 RS232 and CM 1241 RS485 30 mm 15 mm

The CPUs, SMs and CMs support DIN rail mounting and panel mounting. Use the DIN rail
clips on the module to secure the device on the rail. These clips also snap into an extended
position to provide screw mounting positions to mount the unit directly on a panel. The
interior dimension of the hole for the DIN clips on the device is 4.3 mm.

A 25 mm thermal zone must be provided above and below the unit for free air circulation.

S7-1200 Programmable controller
22 System Manual, 04/2009, ASE02486680-01

Installation
2.1 Installation and removal procedures

Installing and removing the S7-1200 devices

The CPU can be easily installed on a standard DIN rail or on a panel. DIN rail clips are
provided to secure the device on the DIN rail. The clips also snap into an extended position
to provide a screw mounting position for panel-mounting the unit.

@ ®
©) DIN rail installation ® Panel installation
® DIN rail clip in latched position @ Clip in extended position for panel mounting

Before you install or remove any electrical device, ensure that the power to that equipment
has been turned off. Also, ensure that the power to any related equipment has been turned
off.

AWARNING

Installation or removal of S7-1200 or related equipment with the power applied could cause
electric shock or unexpected operation of equipment.

Failure to disable all power to the S7-1200 and related equipment during installation or
removal procedures could result in death, severe personal injury and/or property damage
due to electric shock or unexpected equipment operation.

Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove S7-1200 CPUs or related equipment.

Always ensure that whenever you replace or install an S7-1200 device you use the correct
module or equivalent device.

A WARNING

Incorrect installation of an S7-1200 module may cause the program in the S7-1200 to
function unpredictably.

Failure to replace an S7-1200 device with the same model, orientation, or order could result
in death, severe personal injury and/or property damage due to unexpected equipment
operation.

Replace an S7-1200 device with the same model, and be sure to orient and position it
correctly.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 23

Installation

2.1 Installation and removal procedures

211

Installation

24

Installing and removing the CPU

You can install the CPU on a panel or on a DIN rail.

Note

Attach any communication modules to the CPU and install the assembly as a unit. Install
signal modules separately after the CPU has been installed.

To mount the CPU on a panel, follow these steps:

1. Locate, drill, and tap the mounting holes (M4 or American Standard number 8), using the
dimensions shown in the mounting dimensions.

2. Extend the mounting clips from the module. Make sure the DIN rail clips on the top and
bottom of the CPU are in the extended position.

3. Secure the module to the panel, using screws placed into the clips.

Note

If your system is subject to a high vibration environment, or is mounted vertically, panel
mounting the S7-1200 will provide a greater level of protection.

To install the CPU on a DIN rail, follow these steps:

Install the DIN rail. Secure the rail to the mounting panel every 75 mm.

Hook the CPU over the top of the DIN rail.

Pull out the DIN rail clip on the bottom of the CPU to allow the CPU to fit over the rail.
Rotate the CPU down into position on the rail.

Push in the clips to latch the CPU to the rail.

ok wd -

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Installation
2.1 Installation and removal procedures

Removal

To prepare the CPU for removal, remove power from the CPU and disconnect the I/O
connectors, wiring, and cables from the CPU. Remove the CPU and any attached
communication modules as a unit. All signal modules should remain installed.

If a signal module is connected to the CPU, retract the bus connector:
1. Place a screwdriver beside the tab on the top of the signal module.
2. Press down to disengage the connector from the CPU.

3. Slide the tab fully to the right.

Remove the CPU:
1. Pull out the DIN rail clip to release the CPU from the rail.
2. Rotate the CPU up and off the rail, and remove the CPU from the system.

21.2 Installing and removing a signal module

Installation
Install your SM after installing the CPU.

Remove the cover for the connector from the right side of the CPU.
¢ Insert a screwdriver into the slot above the cover.
e Gently pry the cover out at its top and remove the cover. Retain the cover for reuse.

Position the SM beside the CPU.

1. Hook the SM over the top of the DIN rail.

2. Pull out the bottom DIN rail clip to allow the SM to fit
over the rail.

3. Rotate the SM down into position beside the CPU
and push the bottom clip in to latch the SM onto the
rail.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 25

Installation

2.1 Installation and removal procedures

Removal

26

Extend the bus connector.

1. Place a screwdriver beside the tab on the top of the
SM.

2. Slide the tab fully to the left to extend the bus
connector into the CPU.

Extending the bus connector makes both mechanical
and electrical connections for the SM.

You can remove any SM without removing the CPU or other SMs in place. To prepare for
removing the SM, remove power from the CPU and remove the 1/O connectors and wiring
from the SM.

Retract the bus connector.

1. Place a screwdriver beside the tab
on the top of the SM.

2. Press down to disengage the
connector from the CPU.

3. Slide the tab fully to the right.

If there is another SM to the right, repeat this procedure for that SM.
Remove the SM:

1. Pull out the bottom DIN rail clip to release the SM
from the rail.

2. Rotate the SM up and off the rail. Remove the SM
from the system.

3. If required, cover the bus connector on the CPU to
avoid contamination.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Installation

2.1 Installation and removal procedures

21.3 Installing and removing a communication module

Installation

Attach the CM to the CPU before installing the assembly as a unit to the DIN rail or panel.

Remove the bus cover from the left side of the CPU:

. Insert a screwdriver into

. Gently pry out the cover

the slot above the bus
cover.

at its top.

Remove the bus cover. Retain the cover for reuse.

Connect the units:
1.

Align the bus connector
and the posts of the CM
with the holes of the CPU

Firmly press the units
together until the posts
snap into place.

Installing the units on the DIN rail or on a panel.

1.

For DIN rail mounting, make sure the upper DIN rail clip is in the latched (inner) position
and that the lower DIN rail clip is in the extended position for the CPU and attached
CMs.

Install the CPU and attached CMs as shown in Installing and removing the CPU
(Page 24).

After installing the devices on the DIN rail, move the lower DIN rail clips to the latched
position to lock the devices on the DIN rail.

For panel mounting, make sure the DIN rail clips are pushed to the extended position.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 27

Installation

2.1 Installation and removal procedures

Removal
Remove the CPU and CM as a unit from the DIN rail or panel.
Prepare for CM removal.
1. Remove power from the CPU.
2. Remove the 10 connectors and all wiring and cables
from the CPU and CMs.
3. For DIN rail mounting, move the lower DIN rail clips
on the CPU and CMs to the extended position.
4. Remove the CPU and CMs from the DIN rail or
panel.
Remove the CM.
1. Grasp the CPU and CMs firmly.
2. Pull them apart.
Do not use a tool to separate the modules because this
will damage the units.
214 Installing and removing a signal board
Installation

Prepare the CPU for installation of the SB by removing the power from the CPU and
removing the top and bottom terminal block covers from the CPU.

To install the SB, follow these steps:

1. Place a screwdriver into the slot
on top of the CPU at the rear of
the cover.

2. Gently pry the cover up and
remove it from the CPU.

3. Place the SB straight down into its
mounting position in the top of the
CPU.

4. Firmly press the SB into position
until it snaps into place.

5. Replace the terminal block covers.

S7-1200 Programmable controller
28 System Manual, 04/2009, ASE02486680-01

Installation

Removal

2.1 Installation and removal procedures

Prepare the CPU for removal of the SB by removing power from the CPU and removing the
top and bottom terminal block covers from the CPU.

To remove the SB, follow these
steps:
1.

2.

Place a screwdriver into the slot
on top of the SB.

Gently pry the SB up to disengage
it from the CPU.

Remove the SB straight up from
its mounting position in the top of
the CPU.

Replace the SB cover.
Replace the terminal block covers.

21.5 Removing and reinstalling the S7-1200 terminal block connector

The CPU, SB and SM modules provide removable connectors to make connecting the wiring
easy. To prepare the system for terminal block connector removal:

® Remove power from the CPU.

® Open the cover above the connector.

To remove the connector, follow these steps:

1.

Inspect the top of the connector and
locate the slot for the tip of the
screwdriver.

Insert a screwdriver into the slot.

Gently pry the top of the connector
away from the CPU. The connector
will release with a snap.

Grasp the connector and remove it
from the CPU.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 29

Installation

2.2 Wiring guidelines

To install the connector, follow these steps:

1. Prepare the components for terminal block installation by
removing power from the CPU and opening the cover for the
terminal block.

2. Align the connector with the pins on the unit.

3. Align the wiring edge of the connector inside the rim of the
connector base.

4. Press firmly down and rotate the connector until it snaps into
place.

Check carefully to ensure that the connector is properly aligned

and fully engaged.

2.2 Wiring guidelines

Prerequisites

30

Proper grounding and wiring of all electrical equipment is important to help ensure the
optimum operation of your system and to provide additional electrical noise protection for
your application and the S7-1200. Refer to the technical specifications (Page 283) for the
S7-1200 wiring diagrams.

Before you ground or install wiring to any electrical device, ensure that the power to that
equipment has been turned off. Also, ensure that the power to any related equipment has
been turned off.

Ensure that you follow all applicable electrical codes when wiring the S7-1200 and related
equipment. Install and operate all equipment according to all applicable national and local
standards. Contact your local authorities to determine which codes and standards apply to
your specific case.

AWARN ING

Installation or wiring the S7-1200 or related equipment with power applied could cause
electric shock or unexpected operation of equipment. Failure to disable all power to the S7-
1200 and related equipment during installation or removal procedures could result in death,
severe personal injury, and/or damage due to electric shock or unexpected equipment
operation.

Always follow appropriate safety precautions and ensure that power to the S7-1200 is
disabled before attempting to install or remove the S7-1200 or related equipment.

Always take safety into consideration as you design the grounding and wiring of your S7-
1200 system. Electronic control devices, such as the S7-1200, can fail and can cause
unexpected operation of the equipment that is being controlled or monitored. For this reason,
you should implement safeguards that are independent of the S7-1200 to protect against
possible personal injury or equipment damage.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Installation
2.2 Wiring guidelines

A WARNING

Control devices can fail in an unsafe condition, resulting in unexpected operation of
controlled equipment. Such unexpected operations could result in death, severe personal
injury and/or property damage.

Use an emergency stop function, electromechanical overrides, or other redundant
safeguards that are independent of the S7-1200.

Guidelines for isolation

S7-1200 AC power supply boundaries and I/O boundaries to AC circuits have been designed
and approved to provide safe separation between AC line voltages and low voltage circuits.
These boundaries include double or reinforced insulation, or basic plus supplementary
insulation, according to various standards. Components which cross these boundaries such
as optical couplers, capacitors, transformers, and relays have been approved as providing
safe separation. Isolation boundaries which meet these requirements have been identified in
S7-1200 product data sheets as having 1500 VAC or greater isolation. This designation is
based on a routine factory test of (2Ue + 1000 VAC) or equivalent according to approved
methods. S7-1200 safe separation boundaries have been type tested to 4242 VDC.

The sensor supply output, communications circuits, and internal logic circuits of an S7-1200
with included AC power supply are sourced as SELV (safety extra-low voltage) according to
EN 61131-2. These circuits become PELV (protective extra-low voltage) if the sensor supply
M, or any other non-isolated M connection to the S7-1200 is connected to ground. Other S7-
1200 M connections which may ground reference the low voltage are designated as not
isolated to logic on specific product data sheets. Examples are analog I/O M, and relay coil
power M.

To maintain the SELV/PELV character of the S7-1200 low voltage circuits, external
connections to communications ports, analog circuits, and all 24 V nominal power supply
and I/O circuits must be powered from approved sources that meet the requirements of
SELV, PELV, Class 2, Limited Voltage, or Limited Power according to various standards.

AWARNING

Use of non-isolated or single insulation supplies to supply low voltage circuits from an AC
line can result in hazardous voltages appearing on circuits that are expected to be touch
safe, such as communications circuits and low voltage sensor wiring.

Such unexpected high voltages could cause electric shock resulting in death, severe
personal injury and/or property damage.

Only use high voltage to low voltage power converters that are approved as sources of
touch safe, limited voltage circuits.

Guidelines for grounding the S7-1200

The best way to ground your application is to ensure that all the common and ground
connections of your S7-1200 and related equipment are grounded to a single point. This
single point should be connected directly to the earth ground for your system.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 31

Installation

2.2 Wiring guidelines

All ground wires should be as short as possible and should use a large wire size, such as 2
mm?2 (14 AWG).

When locating grounds, consider safety-grounding requirements and the proper operation of
protective interrupting devices.

Guidelines for wiring the S7-1200

32

When designing the wiring for your S7-1200, provide a single disconnect switch that
simultaneously removes power from the S7-1200 CPU power supply, from all input circuits,
and from all output circuits. Provide over-current protection, such as a fuse or circuit breaker,
to limit fault currents on supply wiring. Consider providing additional protection by placing a
fuse or other current limit in each output circuit.

Install appropriate surge suppression devices for any wiring that could be subject to lightning
surges.

Avoid placing low-voltage signal wires and communications cables in the same wire tray with
AC wires and high-energy, rapidly switched DC wires. Always route wires in pairs, with the
neutral or common wire paired with the hot or signal-carrying wire.

Use the shortest wire possible and ensure that the wire is sized properly to carry the required
current. The connector accepts wire sizes from 2 mm2 to 0.3 mm2 (14 AWG to 22 AWG).
Use shielded wires for optimum protection against electrical noise. Typically, grounding the
shield at the S7-1200 gives the best results.

When wiring input circuits that are powered by an external power supply, include an
overcurrent protection device in that circuit. External protection is not necessary for circuits
that are powered by the 24 VDC sensor supply from the S7-1200 because the sensor supply
is already current-limited.

All S7-1200 modules have removable connectors for user wiring. To prevent loose
connections, ensure that the connector is seated securely and that the wire is installed
securely into the connector. To avoid damaging the connector, be careful that you do not
over-tighten the screws. The maximum torque for the connector screw is 0.56 N-m (5 inch-
pounds).

To help prevent unwanted current flows in your installation, the S7-1200 provides isolation
boundaries at certain points. When you plan the wiring for your system, you should consider
these isolation boundaries. Refer to the technical specifications for the amount of isolation
provided and the location of the isolation boundaries. Do not depend on isolation boundaries
rated less than 1500 VAC as safety boundaries.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Installation

2.2 Wiring guidelines

Guidelines for inductive loads

You should equip inductive loads with suppression circuits to limit voltage rise when the
control output turns off. Suppression circuits protect your outputs from premature failure due
to the high voltages associated with turning off inductive loads. In addition, suppression
circuits limit the electrical noise generated when switching inductive loads. Placing an
external suppression circuit so that it is electrically across the load, and physically located
near the load is most effective in reducing electrical noise.

Note

The effectiveness of a given suppression circuit depends on the application, and you must
verify it for your particular use. Always ensure that all components used in your suppression
circuit are rated for use in the application.

Control DC inductive loads

S7-1200 DC outputs include suppression circuits @ @
that are adequate for the inductive loads in most A B

applications. Since the relays can be used for
either a DC or an AC load, internal protection is m
not provided. The following figure shows a sample @

suppression circuit for a DC load. ® 11N4001 diode or equivalent
In most applications, the addition of a diode (A) 8.2 V Zener (DC outputs
across the inductive load is suitable, but if your © & (utputs),
application requires faster turn-off times, then the
addition of a Zener diode (B) is recommended. ®

36 V Zener (Relay outputs)
Output point

Be sure to size your Zener diode properly for the amount of current in your output circuit.

Relay outputs that control AC loads @ @
When you use a relay output to switch 115 /230 W
VAC loads, place resistor/capacitor networks MOV

across the AC load as shown in this figure. You

can also use a metal oxide varistor (MOV) to limit

peak voltage. Ensure that the working voltage of @ |
the MOV is at least 20% greater than the nominal ® 01uF

line voltage.
® 100t0120Q
® Output point

Guidelines for lamp loads

Lamp loads are damaging to relay contacts because of the high turn-on surge current. This
surge current will nominally be 10 to 15 times the steady state current for a Tungsten lamp.
A replaceable interposing relay or surge limiter is recommended for lamp loads that will be
switched a large number of times during the lifetime of the application.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 33

Installation

2.2 Wiring guidelines

S7-1200 Programmable controller
34 System Manual, 04/2009, A5E02486680-01

PLC concepts 3

3.1 Execution of the user program

The CPU supports the following types of code blocks that allow you to create an efficient
structure for your user program:

® Organization blocks (OBs) define the structure of the program. Some OBs have
predefined behavior and start events, but you can also create OBs with custom start
events.

® Functions (FCs) and function blocks (FBs) contain the program code that corresponds to
specific tasks or combinations of parameters. Each FC or FB provides a set of input and
output parameters for sharing data with the calling block. An FB also uses an associated
data block (called an instance DB) to maintain state of values between execution that can
be used by other blocks in the program.

e Data blocks (DBs) store data that can be used by the program blocks.

Organization blocks (OBs)

OBs control the execution of the user program. Each OB must have a unique OB number.
Some default OB numbers are reserved below 200. Other OBs must be numbered 200 or
greater.

Specific events in the CPU trigger the execution of an organization block. OBs cannot call
each other or be called from an FC or FB. Only a start event, such as a diagnostic interrupt
or a time interval, can start the execution of an OB. Another code block cannot call an OB.
The CPU handles OBs according to their respective priority classes, with higher priority OBs
executed before lower priority OBs. The lowest priority class is 1 (for the main program
cycle), and the highest priority class is 28 (for the diagnostic interrupts).

OBs control the following operations:

® Program cycle OBs execute cyclically while the CPU is in RUN mode. The main block of
the program is a cyclic OB. This is where you place the instructions that control your
program and where you call additional user blocks. Multiple cyclic OBs are allowed. OB 1
is the default. Others must be OB 200 or greater.

e Startup OBs execute one time when the operating mode of the CPU changes from STOP
to RUN, including powering up in the RUN mode and in commanded STOP-to-RUN
transitions. After completion, the main "Program cycle" OB will begin executing. Multiple
startup OBs are allowed. OB 100 is the default. Others must be OB 200 or greater.

o Time-delay OBs execute at a specified interval after an event is configured by the Start
interrupt (SRT_DINT) instruction. The delay time is specified in the input parameter of the
extended instruction SRT_DINT. A time-delay OB interrupts normal cyclic program
execution when a specified delay time has expired. You can configure up to 4 time-delay
events at any given time, with one OB allowed for each configured time-delay event. The
time-delay OB must be OB 200 or greater.

e (Cyclic interrupt OBs execute at a specified interval. A cyclic interrupt OB will interrupt
cyclic program execution at user defined intervals, such as every 2 seconds. You can
configure up to 4 cyclic interrupt events, with one OB allowed for each configured cyclic
interrupt event. The OB must be OB 200 or greater.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 35

PLC concepts

3.1 Execution of the user program

e Hardware interrupt OBs execute when the relevant hardware event occurs, including
rising and falling edges on built-in digital inputs and HSC events. A hardware interrupt OB
will interrupt normal cyclic program execution in reaction to a signal from a hardware
event. You define the events in the properties of the hardware configuration. One OB is
allowed for each configured hardware event. The OB must be OB 200 or greater.

e Time-error interrupt OBs execute when a time error is detected. A time error interrupt OB
will interrupt normal cyclic program execution if the maximum cycle time has been
exceeded. The maximum cycle time is defined in the properties of the PLC. OB 80 is the
only OB number supported for the time error event. You can configure the action to take
when no OB 80 is present: either ignore the error or change to STOP.

e Diagnostic error interrupt OBs execute when a diagnostic error is detected and reported.
A diagnostic OB interrupts the normal cyclic program execution if a diagnostics-capable
module recognizes an error (if the diagnostic error interrupt has been enabled for the
module). OB 82 is the only OB number supported for the diagnostic error event. If there is
no diagnostic OB in the program, you can configure the CPU to either ignore the error or
to change to STOP.

Execution of the user program

36

Execution of the user program begins with one or more optional start-up organization blocks
(OBs) which are executed once upon entering RUN mode, followed by one or more program
cycle OBs which are executed cyclically. An OB can also be associated with an interrupt
event, which can be either a standard event or an error event, and executes whenever the
corresponding standard or error event occurs.

A function (FC) or a function block (FB) is a block of program code that can be called from
an OB or from another FC or FB, down to the following nesting depths:

® 16 from the program cycle or startup OB

e 4 from time delay interrupt, cyclic interrupt, hardware interrupt, time error interrupt, or
diagnostic error interrupt OB

FCs are not associated with any particular data block (DB), while FBs are tied directly to a
DB and use the DB for passing parameters and storing interim values and results.

The size of the user program, data, and configuration is limited by the available load memory
in the CPU. There is no limit to the number of blocks supported; the only limit is due to
memory size.

Each cycle includes writing the outputs, reading the inputs, executing the user program
instructions, and performing system maintenance or background processing. The cycle is
referred to as a scan cycle or scan.

The signal board, signal modules and communication modules are detected and logged in
only upon power up. Insertion and extraction of a signal board, signal modules, and
communications module under power (hot) is not supported. The only exception is the
SIMATIC Memory Card, which can be inserted or removed while the CPU is under power.

Under default conditions, all digital and analog I/O points are updated synchronously with the
scan cycle using an internal memory area called the process image. The process image
contains a snapshot of the physical inputs and outputs (the physical I/O points on the CPU,
signal board, and signal modules).

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PLC concepts

3.1 Execution of the user program

The CPU performs the following tasks:

® The CPU reads the physical inputs just prior to the execution of the user program and
stores the input values in the process image input area. This ensures that these values
remain consistent throughout the execution of the user instructions.

® The CPU executes the logic of the user instructions and updates the output values in the
process image output area instead of writing to the actual physical outputs.

® After executing the user program, the CPU writes the resulting outputs from the process
image output area to the physical outputs.

This process provides consistent logic through the execution of the user instructions for a
given cycle and prevents the flickering of physical output points that might change state
multiple times in the process image output area.

You can change the default behavior for a module by removing it from this automatic update
of 1/0. You can also immediately read and write digital and analog 1/O values to the modules
when an instruction executes. Immediate reads of physical inputs do not update the process
image input area. Immediate writes to physical outputs update both the process image
output area and the physical output point.

Configuring the startup parameters

You use the CPU properties to configure how the CPU starts up after a power cycle.

Ay Select whether the CPU
starts in STOP mode, RUN

Poweer-up mode: Warrm restar - Operating modi- mode, or in the preViOUS

Mo restart {stay in STOP mode) mode (prior to the power

‘WA raseare - UM |
‘Warrn restart - Operating mode before POWER OFF cyc e)'

The CPU performs a warm restart before going to RUN mode. Warm restart resets all non-
retentive memory to the default start vales, but retains the current values stored in the
retentive memory.

3.1.1 Operating modes of the CPU

The CPU has three modes of operation: STOP mode, STARTUP mode, and RUN mode.
Status LEDs on the front of the CPU indicate the current mode of operation.

e |n STOP mode, the CPU is not executing the program, and you can download a project.

® |n STARTUP mode, the startup OBs (if present) are executed once. Interrupt events are
not processed during the startup phase of RUN mode.

e In RUN mode, the scan cycle is executed repeatedly. Interrupt events can occur and be
processed at any point within the program cycle phase.

You cannot download a project while in RUN mode.

The CPU supports the warm restart method for entering the RUN mode. Warm restart does
not include a memory reset, but a memory reset can be commanded from the programming
software. A memory reset clears all work memory, clears retentive and non-retentive
memory areas, and copies load memory to work memory. A memory reset does not clear the

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 37

PLC concepts

3.1 Execution of the user program

38

diagnostics buffer or the permanently saved values of the IP address. All non-retentive
system and user data are initialized at warm restart.

You can specify the power-up mode of the CPU complete with restart method using the
programming software. This configuration item appears under the Device Configuration for
the CPU under Startup. When power is applied, the CPU performs a sequence of power-up
diagnostic checks and system initialization. The CPU then enters the appropriate power-up
mode. Certain detected errors will prevent the CPU from entering the RUN mode. The CPU
supports the following power-up modes:

e STOP mode
® Go to RUN mode after warm restart
® (o to previous mode after warm restart

Startup

Power-up mode: Warrm restan - Gperating modie

Mo restart (stay in STOF mode)
‘Warrm restar - RBUN

‘Warrn restart - Operating mode before POWER OFF

You can change the current operating mode using the "STOP" or "RUN" commands from the
online tools of the programming software. You can also include a STP instruction in your
program to change the CPU to STOP mode. This allows you to stop the execution of your
program based on the program logic.

In STOP mode, the CPU @ handles any communication requests (as
appropriate) and @ performs self-diagnostics. @ @

In STOP mode, the CPU does not execute the user program, and the
automatic updates of the process image do not occur.

You can download your project only when the CPU is in STOP mode.

In RUN mode, the CPU performs the tasks shown in the following figure.

STARTUP
A Clears the | memory area Writes Q memory to the physical outputs

RUN
0]
B Initializes the outputs with either the last @ Copies the state of the physical inputs to |
value or the substitute value memory

®

®

®

C Executes the startup OBs

D Copies the state of the physical inputs to
| memory

Executes the cyclic OBs

Handles communication requests and
performs self-test diagnostics

E Stores any interrupt events into the Processes interrupts during any part of the
queue to be processed in RUN mode scan cycle

F Enables the writing of Q memory to the
physical outputs

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PLC concepts
3.1 Execution of the user program

STARTUP processing

Whenever the operating state changes from STOP to RUN, the CPU clears the process
image inputs, initializes the process image outputs, and processes the startup OBs.
(Therefore, any read accesses to the process-image inputs by instructions in the startup OBs
will read zero rather than the current physical input value.) To read the current state of a
physical input during the startup mode, you must perform an immediate read. The startup
OBs and any associated FCs and FBs are executed next. If more than one startup OB
exists, each is executed in order according to the OB number, with the lowest OB number
executing first.

The CPU also performs the following tasks during the startup processing.
® |nterrupts are queued but not processed during the startup phase
® No cycle time monitoring is performed during the startup phase

® Configuration changes to HSC (high-speed counter), PWM (pulse-width modulation), and
PtP (point-to-point communication) modules can be made in startup

® Actual operation of HSC, PWM and point-to-point communication modules only occurs in
RUN

After the execution of the startup OBs finishes, the CPU goes to RUN mode and processes
the control tasks in a continuous scan cycle.

Processing the scan cycle during RUN mode

For each scan cycle, the CPU writes the outputs, reads the inputs, executes the user
program, responds to communication requests, updates communication modules, performs
internal housekeeping chores, and responds to user interrupt conditions.

These actions (except for user events) are serviced regularly and in sequential order. User
events, which are enabled, are serviced according to priority in the order in which they occur.

The system guarantees that the scan cycle will be completed in a time period called the
maximum cycle time; otherwise a time error event is generated.

Each scan cycle begins by retrieving the current values of the digital and analog outputs
from the process image and then writing them to the physical outputs of the CPU, SB, and
SM modules configured for synchronous update (default configuration).

If a CPU, SB, or SM module has been excluded from the automatic I/O update, then its
outputs are not copied from the process image. Outputs that are selectively excluded from
the 1/0 update may be accessed during execution of the user program using immediate
addressing to access the physical outputs. When a physical output is accessed by an
instruction, both the output process image and the physical output itself are updated.

The scan cycle continues by reading the current values of the digital and analog inputs from
the CPU, SB, and SMs configured for synchronous update (default configuration), and then
writing these values to the process image.

If a CPU, SB, or SM module has been excluded from the synchronous update, then its inputs
are not copied into the process image. Inputs that are selectively excluded from the 1/O
update may be accessed using immediate addressing to access the physical inputs. When a
physical input is accessed by an instruction, the value of the physical input is accessed by
the instruction, but the input process image is not updated.

After reading the inputs, the user program is executed from the first instruction through the
end instruction. This includes all the program cycle OBs plus all their associated FCs and

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 39

PLC concepts

3.1 Execution of the user program

FBs. The program cycle OBs are executed in order according to the OB number with the
lowest OB number executing first.

During the communications processing step of the scan cycle, messages that have been
received are processed. Completed responses are set aside for transfer to the
communications requester at the appropriate time.

Self-diagnostic checks include periodic checks of the firmware and the user program
memory as well as /O module status checks.

Interrupts can occur during any part of the scan cycle, and are event-driven. When an event
occurs, the CPU interrupts scanning and calls the OB that was configured to process that
event. After the OB finishes processing the event, the CPU resumes execution of the user
program at the point of interruption.

3.1.2 Event execution priorities and queuing

CPU processing is driven by events. Only the program cycle event is required. Other events
can be enabled if required.

Some events, such as the cyclic event, are enabled at configuration time. Other events, such
as the time delay event, are enabled at runtime. When enabled, an event is attached to an
associated OB (program cycle and startup events can each be attached to multiple OBs). An
occurrence of an event leads to the execution of its event service routine, which is the
attached OB plus any functions called from the OB. Priorities, priority groups, and queues
are used to determine the processing order for the event service routines.

Understanding event execution priorities and queuing

40

The number of pending (queued) events from a single source is limited using a different
queue for each event type. Upon reaching the limit of pending events for a given event type,
the next event is lost. Refer to the following section on "Understanding time error events" for
more information regarding queue overflows.

Each CPU event has an associated priority, and the event priorities are classified into priority
groups. The following table summarizes the queue depths, priority groups and priorities for
the supported CPU events.

Note
You cannot change the priority or the priority group assignments or the queue depths.

In general, events are serviced in order of priority (highest priority first). Events of the same
priority are serviced on a "first-come, first-served" basis.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PLC concepts

3.1 Execution of the user program

Event Type (OB) Quantity Valid OB Queue | Priority | Priority
Numbers Depth Group
Program Cycle 1 program cycle event 1 (default) 1 1 1
Multiple OBs allowed 200 or greater
Startup 1 startup event ! 100 (default) 1 1
Multiple OBs allowed 200 or greater
Time Delay 4 time delay events 200 or greater 8 2 3

1 OB per event

Cyclic 4 cyclic events 200 or greater 8 4
1 OB per event

Edges 16 rising edge events 200 or greater 32 5
16 falling edge events
1 OB per event

HSC 6 CV =PV events 200 or greater 16 6
6 direction changed events
6 external reset events

1 OB per event

Diagnostic Error 1 event (OB 82 only) 82 only 8 9
Time Error 1 time error event 80 only 8 3 26
1 MaxCycle time event
(OB 80 only)
1 2xMaxCycle 27

1 Special cases for the startup event

e The startup event and the program cycle event will never occur at the same time because the
startup event will run to completion before the program cycle event will be started (controlled by
the operating system).

e Only the diagnostic error event (associated with OB 82) is allowed to interrupt the startup event.
All other events are queued for later processing after the startup event is finished.

After the execution of an OB has started, processing of the OB cannot be interrupted by the
occurrence of another event from the same or lower priority group. Such events are queued
for later processing, allowing the current OB to finish.

However, an event from a higher priority group will interrupt the current OB, and the CPU
then executes the OB for the higher-priority event. After the higher-priority OB finishes, the
CPU executes the OBs for any other events queued in this higher priority group, based on
the priority within that group. When no other events are pending (queued) in this higher
priority group, the CPU then returns to the lower priority group and resumes the processing
of the pre-empted OB at the point where the processing of that OB had been interrupted.

Interrupt latency

The interrupt event latency (the time from notification of the CPU that an event has occurred
until the CPU begins execution of the first instruction in the OB that services the event) is
175 psec or less, provided that a program cycle OB is the only event service routine active at
the time of the event.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 41

PLC concepts

3.1 Execution of the user program

Understanding time error events

The occurrence of any of several different time error conditions results in a time error event.
The following time errors are supported:

® Maximum cycle time exceeded
® Requested OB cannot be started
® Queue overflow occurred

The maximum cycle time exceeded condition results if the program cycle does not complete
within the specified maximum scan cycle time. See the section on "Monitoring the cycle time
(Page 40)" for more information regarding the maximum cycle time condition, how to
configure the maximum scan cycle time, and how to reset the cycle timer.

The requested OB cannot be started condition results if an OB is requested by a cyclic
interrupt or a time-delay interrupt, but the requested OB is already being executed.

The queue overflow occurred condition results if the interrupts are occurring faster than they
can be processed. The number of pending (queued) events is limited using a different queue
for each event type. If an event occurs when the corresponding queue is full, a time error
event is generated.

All time error events trigger the execution of OB 80 if it exists. If OB 80 does not exist, then
the CPU ignores the error. If two maximum cycle time exceeded conditions occur within the
same program cycle without resetting the cycle timer, then the CPU transitions to STOP,
regardless of whether OB 80 exists. See the section on "Monitoring the cycle time

(Page 40)".

OB 80 includes startup information that helps you determine which event and OB generated
the time error. You can program instructions inside OB 80 to examine these startup values
and to take appropriate action. The following startup locations are supported by OB 80:

Input Data type Description

fault_id BYTE 16#01 - maximum cycle time exceeded
16#02 - requested OB cannot be started
16#07 and 16#09 - queue overflow occurred

csg_OBnr OB_ANY Number of the OB which was being executed when the error
occurred
csg_prio UINT Priority of the OB causing the error

No time error interrupt OB 80 is present when you create a new project. If desired, you add a
time error interrupt OB 80 to your project by double-clicking "Add new block" under "Program
blocks" in the tree, then choose "Organization block", and then "Time error interrupt”.

Understanding diagnostic error events

42

Some devices are capable of detecting and reporting diagnostic errors. The occurrence of
any of several different diagnostic error conditions results in a diagnostic error event. The
following diagnostic errors are supported:

e No user power
e Overflow

e Underflow

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PLC concepts

3.1 Execution of the user program

o Wire break
® Short circuit

All diagnostic error events trigger the execution of OB 82 if it exists. If OB 82 does not exist,
then the CPU ignores the error.

OB 82 includes startup information that helps you determine the error and which device
reported the error. You can program instructions inside OB 82 to examine these startup
values and to take appropriate action. The following startup locations are supported by OB

82:
Input Data type Description
IO_state WORD 10 state of the device
laddr HW_ANY The device that reported the error
channel UINT Channel number (0 based)
multi_error BOOL TRUE if more than one error is present

No diagnostic error interrupt OB 82 is present when you create a new project. If desired, you
add a diagnostic error interrupt OB 82 to your project by double-clicking "Add new block"
under "Program blocks" in the tree, then choose "Organization block", and then "Diagnostic
error interrupt".

Monitoring the cycle time

The cycle time is the time that the CPU operating system requires to execute the cyclic
phase of the RUN mode. The CPU provides two methods of monitoring the cycle time:

® Maximum scan cycle time
® Fixed minimum scan cycle time

Scan cycle monitoring begins after the startup phase is complete. Configuration for this
feature appears under the "Device Configuration" for the CPU under "Cycle time".

The CPU always monitors the scan cycle and reacts if the maximum scan cycle time is
exceeded. If the configured maximum scan cycle time is exceeded by a scan, an error is
generated and is handled one of two ways:

® [f no time error interrupt OB 80 is present, then the CPU goes to STOP mode
e |f a time error interrupt OB 80 is present, then the CPU executes OB 80

The RE_TRIGR instruction (Re-trigger cycle time monitoring) is available for resetting the
timer that measures the cycle time. However, this instruction only functions if executed in a
program cycle OB; the RE_TRIGR instruction is ignored if executed in OB 80.

If the maximum scan cycle time is exceeded twice within the same program cycle, with no
RE_TRIGR instruction execution between the two, then the CPU transitions to STOP
immediately.

An endless loop or very long scan can potentially be created using repeated executions of
the RE_TRIGR instruction. In order to prevent the CPU from being locked up in a scan, a
communication time slice will be allocated every 100ms. The length of this time slice will be
the percentage specified in the Communications load configuration parameter under Device
configuration for the CPU. This provides the opportunity to regain control of the CPU and
command it to STOP, if required.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 43

PLC concepts

3.1 Execution of the user program

Ordinarily the scan cycle executes as fast as it can be executed and the next scan cycle
begins as soon as the current one completes. Depending upon the user program and
communication tasks, the time period for a scan cycle can vary from scan to scan. To
eliminate this variation, the CPU supports an optional fixed minimum scan cycle time (also
called fixed scan cycle). When this optional feature is enabled and a fixed minimum scan
cycle time is provided in ms, the CPU will maintain the minimum cycle time within +1ms for
the completion of each CPU scan.

In the event that the CPU completes the normal scan cycle in less time than the specified
minimum cycle time, the CPU spends the additional time of the scan cycle performing
runtime diagnostics and/or processing communication requests. In this way the CPU always
takes a fixed amount of time to complete a scan cycle.

In the event that the CPU does not complete the scan cycle in the specified minimum cycle
time, the CPU completes the scan normally (including communication processing) and does
not create any system reaction as a result of exceeding the minimum scan time.

The following table defines the ranges and defaults for the cycle time monitoring functions.

Cycle time Range (ms) Default
Maximum scan cycle time 1-6000 150 ms
Fixed minimum scan cycle time 1 - Maximum scan cycle time Disabled

® The maximum scan cycle time is always enabled, and the user must choose a cycle time
between the allowed range of 1 ms to 6000 ms. The default is 150 ms.

® The fixed minimum scan cycle time is optional , and is disabled by default. If used, a
cycle time between 1 ms and the maximum scan cycle time must be chosen.

Configuring the cycle time and communication load
You use the CPU properties to configure the following parameters:

e Cycle time: You can enter a maximum scan cycle time. You can also enter a fixed
minimum scan cycle time.

Cycle time

Masirnum scan cycle tme [ms] 6000

Enable a ficed minirmurm scan cycle time for 081

e Communications load: You can configure a percentage of the scan time to be dedicated
for communication tasks.

Communication load

Maximurm portion of scan for sendcing communications (n%); 20

For more information about the scan cycle, see Monitoring the cycle time. (Page 40)

S7-1200 Programmable controller
44 System Manual, 04/2009, A5E02486680-01

PLC concepts
3.1 Execution of the user program

3.1.3 CPU memory

Memory management

The CPU provides the following memory areas to store the user program, data, and
configuration:

® | oad memory is non-volatile storage for the user program, data and configuration. When
a project is downloaded to the CPU, it is first stored in the Load memory area. This area
is located either in a memory card (if present) or in the CPU. This non-volatile memory
area is maintained through a power loss. The memory card supports a larger storage
space than that built-in to the CPU.

¢ \Work memory RAM is volatile storage for some elements of the user project while
executing the user program. To improve system performance, the CPU copies some
elements of the project from load memory into work memory. This volatile area is lost
when power is removed, and is restored by the CPU when power is restored.

® Retentive memory is non-volatile storage for a limited quantity of work memory values.
The retentive memory area is used to store the values of selected user memory locations
during power loss. When a power down occurs, the CPU by design has enough hold-up
time to retain the values of a limited number of specified locations. These retentive values
are then restored upon power up.

To view the memory usage for the current project, right-click the PLC of interest in the tree or
one of its blocks, and then choose "Resources". To view the memory usage for the current
PLC, double-click "Online and diagnostics" in the tree, expand "Diagnostics", and choose
"Memory".

Retentive memory

The CPU provides for storage of 2048 bytes of retentive data. You can specify work memory
data values, such as data in a DB or bit memory (M), that are to be saved permanently each
time power is removed.

When power is removed, the work memory values selected as retentive are copied to a
block of 2048 consecutive bytes. The checksum is then computed, and retentive values
followed by the checksum are written to non-volatile memory. The checksum and any other
retentive values needed by the operating system of the CPU are provided without consuming
any of the 2048 bytes provided for the user.

At the time power is restored, the system retrieves the retentive data and restores the
corresponding work memory locations to their value prior to power loss.

Any attempt to select more than 2048 bytes of retentive data is rejected.

Diagnostics buffer

The CPU supports a diagnostic buffer which contains an entry for each diagnostic event.

Each entry includes a date and time the event occurred, an event category, and an event
description. The entries are displayed in chronological order with the most recent event at
the top. While the CPU maintains power, up to 50 most recent events are available in this
log. When the log is full, a new event replaces the oldest event in the log. When power is
lost, the ten most recent events are saved.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 45

PLC concepts

3.1 Execution of the user program

The following types of events are recorded in the diagnostics buffer:
e Each system diagnostic event; for example, CPU errors and module errors

® [Each state change of the CPU (each power up, each transition to STOP, each transition
to RUN)

® Each change to a configured object except changes issued by the CPU and the user
program

To access the diagnostic buffer, you must be online. Locate the log under "Online &
diagnostics / Diagnostics / Diagnostics buffer". For more information regarding
troubleshooting and debugging, refer to the "Online and diagnostics" chapter.

Time of day clock

The CPU supports a time-of-day clock. A super-capacitor supplies the energy required to

keep the clock running during times when the CPU is powered down. The super-capacitor
charges while the CPU has power. After the CPU has been powered up at least 24 hours,
then the super-capacitor has sufficient charge to keep the clock running for 10 days.

Configure the time-of-day clock for the CPU under the "Clock" property. You can also enable
daylight saving time and specify the start- and end times for daylight saving time. To set the
time-of-day clock, you must be online and in the "Online & diagnostics" view of the CPU. Use
the "Set time of day" function.

System and clock memory

You use the CPU properties to enable bytes for "system memory" and "clock memory". Your
program logic can reference the individual bits of these functions.

® You can assign one byte in M memory for system memory. The byte of system memory
provides the following four bits that can be referenced by your user program:

— "Always off" bit is always set to 0.
— "Always on" bit is always set to 1.

— "Diagnostic event changed" ("Diag changed") is set to 1 for one scan after the CPU
logs a diagnostic event.

— "First scan" bit is set to1 for the duration of the first scan after the startup OB finishes.
(After the execution of the first scan, the "first scan" bit is set to 0.)

® You can assign one byte in M memory for clock memory. Each bit of the byte configured
as clock memory generates a square wave pulse. The byte of clock memory provides 8
different frequencies, from 0.5 Hz (slow) to 10 Hz (fast). You can use these bits as control
bits, especially when combined with edge instructions, to trigger actions in the user
program on a cyclic basis.

The CPU initializes these bytes at the beginning of the scan cycle.

S7-1200 Programmable controller
46 System Manual, 04/2009, ASE02486680-01

PLC concepts
3.1 Execution of the user program

A\ caution

Overwriting the system memory or clock memory bits can corrupt the data in these
functions and cause your user program to operate incorrectly, which can cause damage to
equipment and injury to personnel.

Because both the clock memory and system memory are unreserved M memory,
instructions or communications can write to these locations and corrupt the data.

Avoid writing data to these locations to ensure the proper operation of these functions, and
always implement an emergency stop circuit for your process or machine.

System memory configures a byte System memory bits
that turns on (value = 1) for the + Enable the use of system mermory byte
following conditions. Lacation of systern flags byte (MBx)

e First scan: Turns on for the first
scan cycle after a power cycle

e Diagnostic graph changed:
e Always 1 (high): Always turned

on
¢ Always 0 (low): Always turned
off
Clock memory configures a byte that Clock memory bits
cycles the individual bits on and off at + Enable the use of clock memory byte

fixed intervals. Location of clock memorny byte (MBx): 0

The clock flags each generate a square
wave pulse on the corresponding M
memory bit. These bits can be used as
control bits, especially when combined
with edge instructions, to trigger actions
in the user code on a cyclic basis.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 47

PLC concepts

3.1 Execution of the user program

Configuring the output values on a RUN-to-STOP transition

You can configure the behavior of the digital and analog outputs following a RUN-to-STOP
transition. For any output of a CPU, SB or SM, you can set the outputs to either freeze the
value or use a substitute value:

e Substituting a specified output value (default): You enter a substitute value for each
output (channel) of that CPU, SB, or SM device.

The default substitute value for digital output channels is OFF, and the default substitute
value for analog output channels is 0.

® Freezing the outputs to remain in last state: The outputs retain their current value at the
time of the transition from RUN to STOP.

You configure the behavior of the outputs in Device Configuration. Select the individual
devices and use the "Properties" tab to configure the outputs for each device.

When the CPU changes from RUN to STOP, the CPU retains the process image and writes
the appropriate values for both the digital and analog outputs, based upon the configuration.

3.1.4 Password protection for the S7-1200 CPU

48

The CPU provides 3 levels of security for AniALG .

restricting access to specific functions. When

you configure the security level and password Mo protection

for a CPU, you limit the functions and memory Write protection

areas that can be accessed without entering a o | Reia dhvrite protction
password.

The password is not case sensitive. Password for readfwrite access

Fazsward
Condirm password

Each level allows certain functions to be accessible without a password. The default
condition for the CPU is to have no restriction and no password-protection. To restrict access
to a CPU, you configure the properties of the CPU and enter the password.

Entering the password over a network does not compromise the password protection for the
CPU. A password-protected CPU allows only one user unrestricted access at a time.

PLC-to-PLC communications (using communication instructions in the code blocks) are not
restricted by the security level in the CPU. HMI functionality is also not restricted. Entering
the correct password provides access to all of the functions.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PLC concepts

3.2 Data storage, memory areas and addressing

Security level Access restrictions
No protection Allows full access without password-protection.
Write protection Allows read-only access to the CPU, HMI access, and PLC-to-PLC

communications without password-protection.

Password is required for modifying (writing to) the CPU and for
changing the CPU mode (RUN/STOP).

Read/write protection Allows HMI access and all forms of PLC-to-PLC communications

without password-protection.

Password is required for reading the data in the CPU, for modifying
(writing to) the CPU, and for changing the CPU mode (RUN/STOP).

With password protection, you can use instructions for process control, monitoring, and
communications without restrictions. Some functions, such as the "Set time of day/date"
instruction, should not be locked with a password. For example: To modify the tags in a CPU
that was configured for read/write protection, you must enter the configured password
because this function requires write access.

3.2 Data storage, memory areas and addressing
The CPU provides several options for storing data during the execution of the user program:

Memory locations: The CPU provides a variety of specialized memory areas, including
inputs (1), outputs (Q), bit memory (M), data block (DB), and local or temporary memory
(L). Your user program accesses (reads from and writes to) the data stored in these
memory areas.

Data block (DB): You can include DBs in your user program to store data for the code
blocks. The data stored in a DB is not deleted when the data block is closed or when the
execution of the associated code block comes to an end. There are two categories of
DBs:

— Global DB: Stores data that can be used by all other blocks

— Instance DB: Stores data for a specific FB and is structured by the parameters for the
FB

Temp memory: Whenever a code block is called, the operating system of the CPU
allocates the temporary, or local, memory (L) to be used during the execution of the
block. When the execution of the code block finishes, the CPU reallocates the local
memory for the execution of other code blocks.

References such as 10.3 and Q1.7 access the process image. To access the physical
input or output, append the reference with ":P" (such as 10.3:P, Q1.7:P, or "Stop:P").

Each different memory location has a unique address. Your user program uses these
addresses to access the information in the memory location.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 49

PLC concepts

3.2 Data storage, memory areas and addressing

50

Memory area Description Force Retentive
| Copied from physical inputs at the beginning Yes No
Process image input of the scan cycle

I_:P Immediate read of the physical input points No No
(Physical input) on the CPU, SB, and SM

Q Copied to physical outputs at the beginning Yes No
Process image output of the scan cycle

Q_P Immediate write to the physical output points No No
(Physical output) on the CPU, SB, and SM

M Control and data memory No Yes
Bit memory

L Temporary data for a block local to that No No
Temp memory block

DB Data memory and also parameter memory No Yes
Data block for FBs

To access a bit in a memory area, you specify the address, which includes the memory area
identifier, the byte address, and the bit number. An example of accessing a bit (which is also

called "byte.bit" addressing) is shown below. In this example, the memory area and byte

address (I = input, and 3 = byte 3) are followed by a period (".") to separate the bit address

(bit 4).
M3 .4 ®
'ONORORO) 7 6 5 4 3 2 10
0
1
® 2
3
4
5
) Memory area identifier 0] Bit location of the byte (bit 4 of 8)
® Byte address: byte 3 (the fourth byte) ® Bytes of the memory area
® Period separates the byte address from ® Bits of the selected byte

the bit number

You can access data in most memory areas (I, Q, M, DB, and L) as bytes, words, or double
words by using the "byte address" format. To access a byte, word, or double word of data in
the memory, you must specify the address in a way similar to specifying the address for a

bit. This includes an area identifier, data size designation, and the starting byte address of
the byte, word, or double word value. Size designators are B (byte), W (word) and D (double-
word). (Examples: IBO, MW20, QD8)

To immediately access the physical inputs and physical outputs, append a ":P" to the
address or tag (such as 10.3:P, Q1.7:P, or "Stop:P").

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PLC concepts

3.2 Data storage, memory areas and addressing

Accessing the data in the memory areas of the CPU

The TIA Portal facilitates symbolic programming. Typically, tags are created either in PLC
tags, a data block, or in the interface at the top of an OB, FC, or FB. These tags include a
name, data type, offset, and comment. Additionally, in a data block, an initial value can be
specified. You can use these tags when programming by entering the tag name at the
instruction parameter. Optionally you can enter the absolute operand (memory, area, size
and offset) at the instruction parameter. The examples in the following sections show how to
enter absolute operands. The % character is inserted automatically in front of the absolute
operand by the program editor. You can toggle the view in the program editor to one of
these: symbolic, symbolic and absolute, or absolute.

| (process image input): The CPU samples the peripheral (physical) input points just prior to
the cyclic OB execution of each scan cycle and writes these values to the input process
image. You can access the input process image in bits, bytes, words, or double words. Both
read and write access is permitted, but typically, process image inputs are only read.

Bit I[byte address].[bit address] 10.1
Byte, Word, or Double Word I[size][starting byte address] B4, IW5, or ID12

By appending a ":P" to the address, you can immediately read the digital and analog inputs
of the CPU, SB or SM. The difference between an access using I_:P instead of | is that the
data comes directly from the points being accessed rather than from the input process
image. This |I_:P access is referred to as an "immediate read" access because the data is
retrieved immediately from the source instead of from a copy that was made the last time the
input process image was updated.

Because the physical input points receive their values directly from the field devices
connected to these points, writing to these points is prohibited. That is, |_:P accesses are
read-only, as opposed to | accesses which can be read or write.

I_:P accesses are also restricted to the size of inputs supported by a single CPU, SB, or SM,
rounded up to the nearest byte. For example, if the inputs of a 2 DI / 2 DQ SB are configured
to start at 14.0, then the input points can be accessed as 14.0:P and 14.1:P or as 1B4:P.
Accesses to 14.2:P through 14.7:P are not rejected, but make no sense since these points are
not used. Accesses to IW4:P and ID4:P are prohibited since they exceed the byte offset
associated with the SB.

Accesses using I_:P do not affect the corresponding value stored in the input process image.

Bit I[byte address].[bit address]:P 10.1:P
Byte, Word, or Double word I[size][starting byte address]:P IB4:P, IW5:P, or ID12:P

Q (process image output): The CPU copies the values stored in the output process image to
the physical output points. You can access the output process image in bits, bytes, words, or
double words. Both read and write access is permitted for process image outputs.

Bit Q[byte address].[bit address] Q1.1
Byte, Word, or Double word Q[size][starting byte address] QB5, QW10, QD40

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 51

PLC concepts

3.2 Data storage, memory areas and addressing

52

By appending a ":P" to the address, you can immediately write to the physical digital and
analog outputs of the CPU, SB or SM. The difference between an access using Q_:P instead
of Q is that the data goes directly to the points being accessed in addition to the output
process image (writes to both places). This Q_:P access is sometimes referred to as an
"immediate write" access because the data is sent immediately to the target point; the target
point does not have to wait for the next update from the output process image.

Because the physical output points directly control field devices that are connected to these
points, reading from these points is prohibited. That is, Q_:P accesses are write-only, as
opposed to Q accesses which can be read or write.

Q_:P accesses are also restricted to the size of outputs supported by a single CPU, SB, or
SM, rounded up to the nearest byte. For example, if the outputs of a 2 DI/ 2 DQ SB are
configured to start at Q4.0, then the output points can be accessed as Q4.0:P and Q4.1:P or
as QB4:P. Accesses to Q4.2:P through Q4.7:P are not rejected, but make no sense since
these points are not used. Accesses to QW4:P and QD4:P are prohibited since they exceed
the byte offset associated with the SB.

Accesses using Q_:P affect both the physical output as well as the corresponding value
stored in the output process image.

Bit Q[byte address].[bit address]:P Q1.1:P

Byte, Word, or Double word Qfsize][starting byte address]:P QB5:P, QW10:P or QD40:P

M (bit memory area): Use the bit memory area (M memory) for both control relays and data
to store the intermediate status of an operation or other control information. You can access
the bit memory area in bits, bytes, words, or double words. Both read and write access is
permitted for M memory.

Bit M[byte address].[bit address] M26.7

Byte, Word, or Double Word M[size][starting byte address] MB20, MW30, MD50

Temp (temporary memory): The CPU provides temp (local) memory for each of the three OB
priority groups: 16 Kbytes for startup and program cycle, including associated FBs and FCs;
4 Kbytes for standard interrupt events including FBs and FCs; and 4 Kbytes for error
interrupt events including FBs and FCs.

Temp memory is similar to M memory with one major exception: M memory has a "global"
scope, and temp memory has a "local" scope:

¢ M memory: Any OB, FC, or FB can access the data in M memory, meaning that the data
is available globally for all of the elements of the user program.

® Temp memory: Access to the data in temp memory is restricted to the OB, FC, or FB that
created or declared the temp memory location. Temp memory locations remain local and
are not share by different code blocks, even when the code block calls another code
block. For example: When an OB calls an FC, the FC cannot access the temp memory of
the OB that called it.

The CPU allocates the temp memory on an as-needed basis. The CPU allocates the temp
memory for the code block at the time when the code block is started (for an OB) or is called
(for an FC or FB). The allocation of temp memory for a code block might reuse the same
temp memory locations previously used by a different OB, FC or FB. The CPU does not
initialize the temp memory at the time of allocation and might contain any value.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PLC concepts
3.2 Data storage, memory areas and addressing

You access temp memory by symbolic addressing only.

DB (data block): Use the DB memory for storing various types of data, including intermediate
status of an operation or other control information parameters for FBs, and data structures
required for many instructions such as timers and counters. You can specify a data block to
be either read/write or read only. You can access data block memory in bits, bytes, words, or
double words. Both read and write access is permitted for read/write data blocks. Only read
access is permitted for read-only data blocks.

Bit DBJ[data block number].DBX[byte DB1.DBX2.3
address].[bit address]

Byte, Word, or Double Word DB[data block number].DB DB1.DBB4, DB10.DBW2,
[size][starting byte address] DB20.DBD8

Addressing the I/O in the CPU and I/O modules

When you add a CPU and 1/0 modules to »

your configuration screen, | and Q

addresses are automatically assigned.

e CPU inputs are bits addressed from 10.0
to 10.7 and 1.0 to 11.5 (14 total points)

e CPU outputs are bits addressed from
Q0.0 to Q0.7 and Q1.0 to Q1.1 (10 total *

pOIntS) M i W pdivess . O sdive Tepe
e CPU analog inputs are addressed by the =~ :33 ——=———
words IW64 and IW66 (2 analog points, RS4E5_1 101 M 1241 (S485)
4 bytes total O
. :%I176 inputs are address 18.0 through PLXIBILT e el ADlsgabond
. HEC 1 115 g speed DoUrters (4
o Al4/AO2 inputs are IW112, IW114, s 1 ot
IWJ 1Q(3\}\/|\1/\'11118 and outputs are QW112 osgi i proklsrmarl it
an HSC.E 121 High e Coufery (H.
PuEs_1 132 Fuks ator (FTOUE,
e DI8 /D08 inputs are 116.0 through 117.7 ol i gﬁugﬂﬁ*
and outputs are Q16.0 through Q17.7 chligriotllii Sl e
A x I3ts 1 3 112..1 M 1231 A4

The figure shows an example of a CPU
1214C with two SMs.

You can change the default addressing by selecting the address field in the configuration
screen and typing new numbers. Digital inputs and outputs are assigned in complete 8 bit
bytes, whether the module uses all the points or not. Analog inputs and outputs are assigned
in groups of 2 points (4 bytes). In this example, you could change the address of the DI16 to
2..3 instead of 8..9. The tool will assist you by changing address ranges that are the wrong
size or conflict with other addresses.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 53

PLC concepts

3.3 Data types

3.3 Data types

54

Data types are used to specify both the size of a data element as well as how the data are to
be interpreted. Each instruction parameter supports at least one data type, and some
parameters support multiple data types. Hold the cursor over the parameter field of an
instruction to see which data types are supported for a given parameter.

A formal parameter is the identifier on an instruction that marks the location of data to be
used by that instruction (example: the IN1 input of an ADD instruction). An actual parameter
is the memory location or constant containing the data to be used by the instruction
(example %MD400 "Number_of_Widgets"). The data type of the actual parameter specified
by you must match one of the supported data types of the formal parameter specified by the
instruction.

When specifying an actual parameter, you must specify either a tag (symbol) or an absolute
memory address. Tags associate a symbolic name (tag name) with a data type, memory
area, memory offset, and comment, and can be created either in the PLC tags editor or in
the Interface editor for a block (OB, FC, FB, or DB). If you enter an absolute address that
has no associated tag, you must use an appropriate size that matches a supported data
type, and a default tag will be created upon entry.

You can also enter a constant value for many of the input parameters. The following table
describes the supported elementary data types including examples of constant entry. All
except String are available in the PLC tags editor and the block Interface editors. String is
available only in the block Interface editors. The following table defines the elementary data

types.

Data Size Range Constant Entry Examples
type (bits)
Bool 1 Oto1 TRUE, FALSE, 0, 1
Byte 8 16#00 to 16#FF 16#12, 16#AB
Word 16 16#0000 to 16#FFFF 16#ABCD, 16#0001
DWord |32 16#00000000 to 16#FFFFFFFF 16#02468ACE
Char 8 16#00 to 16#FF ALtY'@
Sint 8 -128 to 127 123, -123
Int 16 -32,768 to 32,767 123, -123
Dint 32 -2,147,483,648 to 2,147,483,647 123, -123
USint 8 0 to 255 123
Ulint 16 0 to 65,535 123
UDInt 32 0 to 4,294,967,295 123
Real 32 +/-1.18 x 10 38to +/-3.40 x 10 38 123.456, -3.4, -1.2E+12, 3.4E-3
Time 32 T#-24d_20h_31m_23s_648ms to T#5m_30s
T#24d_20h_31m_23s_647ms stored as 5#-2d
-2,147,483,648'ms to +2,147,483,647ms | T#1d_2h_15m_30x_45ms
String Variable |0 to 254 byte-size characters '‘ABC'

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PLC concepts

3.3 Data types

Although not available as data types, the following BCD numeric format is supported by the
conversion instructions.

Format | Size (bits) | Numeric Range Constant Entry Examples
Bool 16 -999 to 999 123, -123
Byte 32 -9999999 to 9999999 1234567, -1234567

Format for real numbers

Real (or floating-point) numbers are represented as 32-bit, single-precision numbers, as
described in the ANSI/IEEE 754-1985 standard. The CPU accesses Real numbers in double
word lengths. Single-precision floating-point numbers are accurate up to 6 significant figures.
You can specify a maximum of 6 significant figures when entering a floating-point constant to
maintain precision.

Calculations that involve a long series of values including very large and very small numbers
can produce inaccurate results. This can occur if the numbers differ by 10 to the power of x,
where x > 6. For example: 100 000 000 + 1 = 100 000 000.

Format for the string data type

The CPU supports the STRING data type for storing a sequence of single-byte character
strings. The STRING data type also contains a total character count (number of characters in
the string) and the current character count. The STRING type provides up to 256 bytes for
storing the total character count (1 byte), the current character count (1 byte), and up to 254
characters, with each character stored in 1 byte.

You can use literal strings (constants) for instruction parameters of type IN using single
quotes. For example, ‘ABC’ is a three-character string that could be used as input for
parameter IN of the S_CONYV instruction. You can also create string variables by selecting
data type "String" in the block interface editors for OB, FC, FB, and DB. You cannot create a
string in the PLC tags editor. You can specify the maximum string size in bytes when
declaring your string; for example, "MyString[10]" would specify a 10-byte maximum size for
MyString. If you do not include the brackets with a max size specifier, 254 is assumed.

The following example defines a STRING with maximum character count of 10 and current
character count of 3. This means the STRING currently contains 3 one-byte characters, but
could be expanded to contain up to 10 one-byte characters.

Total Character | Current Character | Character 1 | Character 2 | Character 3 Character
Count Count 10
10 3 'C' (16#43) | 'A' (16#41) | 'T' (16#54) -
Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 11
S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 55

PLC concepts

3.3 Data types

Arrays

You can create an array that contains multiple elements of an elementary type. Arrays can
be created in the block interface editors for OB, FC, FB, and DB. You cannot create an array
in the PLC tags editor.

To create an array from the block interface editor, choose data type "Array [lo .. hi] of type",
then edit "lo", "hi", and "type" as follows:

® |o - the starting (lowest) index for your array
® hi - the ending (highest) index for your array
® type - one of the elementary data types, such as BOOL, SINT, UDINT

Negative indices are supported. You can name the array in the Name column of the block
interface editor. The following table shows examples of arrays as they might appear in the
block interface editor:

Name Data type Comment
My_Bits Array [1 .. 10] of BOOL This array contains 10 Boolean values
My_Data Array [-5 .. 5] of SINT This array contains 11 SINT values, including index 0

You reference elements of arrays in your program using the following syntax:
® Array_namel[/, where /is the desired index.

Examples as they might appear in the program editor as a parameter input:
e #My Bits[3] - references the third bit of array "My_Bits"

e #My_Data[-2] - references the fourth SINT of array "My_Data"

The # symbol is inserted automatically by the program editor.

S7-1200 Programmable controller
56 System Manual, 04/2009, ASE02486680-01

PLC concepts
3.4 Saving and restoring memory

3.4 Saving and restoring memory

3.4.1 Understanding how the S7-1200 saves and restores data

The CPU provides a variety of features to ensure that your user program and data are
properly retained.

® | oad memory is non-volatile storage for the user program, data and configuration. The
CPU permanently stores load memory. The size of the load memory is based on the
internal load memory (ILM) or external load memory (ELM). The CPU model determines
the size of ILM, and the size of the memory card determines the size of ELM. Refer to the
technical specifications (Page 283) for more information about your CPU.

e Retentive data memory is the data memory that you configure to be retained (remain
unchanged) over a power cycle. The CPU provides for the storage of 2048 bytes of
retentive data. You can specify data values (DB and/or M memory) to be permanently
saved when power is removed.

o Work memory is non-volatile memory used to store the user program, data block, any
forced values, non-retentive M memory, and selected values written by the user program.
The CPU model size determines the size of the work memory.

An optional memory card can be used as either a
Program card or a Transfer card. You must use a pre-
formatted memory card from Siemens:

e Program card: The memory card takes the place of
CPU memory; all of your CPU functions are
controlled by the card. The memory card is
required to remain in the CPU.

e Transfer card: The memory card is used to transfer
a stored project from the card to a CPU; then, the
card must be removed. In this way, you can
transfer your project to multiple CPUs without using
STEP 7 Basic.

To insert a memory card, open the top CPU door and insert the memory card in the slot. A
push-push type connector allows for easy insertion and removal. The memory card is
keyed for proper installation.

AWARNING

If you place a memory card (whether configured as a "Program" or "Transfer" card) in a
running CPU, the CPU will go to STOP. Control devices can fail in an unsafe condition,
resulting in unexpected operation of controlled equipment. Such unexpected operations
could result in death or serious injury to personnel, and/or damage to equipment.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 57

PLC concepts
3.4 Saving and restoring memory

3.4.2 Using the memory card as a "Program" card

When used as a "Program” card, the memory card functions as the
CPU's memory. If you remove the "Program"” card from the CPU, the
CPU loses all project memory.

Check that the memory card is not write-protected. Slide the protection
switch away from the "Lock" position, as shown in the figure on the
right.

Before you copy any program elements to the formatted memory card,
delete any previously saved program elements from the memory card
(except for any user files).

CAUTION

Electrostatic discharge can damage the memory card or the receptacle on the CPU.

Make contact with a grounded conductive pad and/or wear a grounded wrist strap when
you handle the memory card. Store the memory card in a conductive container.

To create a "Program"” card using a CPU, follow these steps:
1. Insert a blank memory card into the memory card reader.

2. Inthe STEP 7 Basic programming device, in the "Project tree," make the following menu
selections:

— (Right-click) SIMATIC Card Reader
— "Properties"

— In the dropdown menu for "Card Type," select "Program."”

Iﬂwmmﬂ:..

PO o L1 =

BN $
i

S7-1200 Programmable controller
58 System Manual, 04/2009, ASE02486680-01

PLC concepts

3.4 Saving and restoring memory

Power off the CPU.
Insert the memory card into the CPU.
Power on the CPU.

Download your project from the STEP 7 Basic programming device to the CPU.

o 0k w

The TIA Portal loads the project, which includes the user program, hardware configuration,
and any forced values, onto the memory card. The memory card must remain in the CPU.

CAUTION

If you insert a blank memory card into the CPU, the CPU will go to STOP. Furthermore, if
you power cycle the CPU, the project currently residing on the CPU will be moved to the
memory card (now a "Program" card by default). All project memory is now loaded onto the
"Program" card. If you now remove the "Program" card from the CPU, the CPU looses all
project memory.

If you insert a blank memory card into the CPU, the CPU will go to STOP. The CPU cannot
be placed back into RUN until the memory card is removed.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 59

PLC concepts

3.4 Saving and restoring memory

3.4.3

Using the memory card as a "Transfer" card

When used as a "Transfer" card, the memory card can copy your project (and updates to
that project) to multiple CPUs.

If any of the blocks or force values present in the memory card are different from the blocks
or force values in the CPU, then all blocks present in the memory card are copied to the

CPU.

permanent memory is replaced.

memory is replaced and all of M memory is cleared.

If a program block was transferred from the memory card, the program block in
If a data block was transferred from the memory card, the data block in permanent

If a system block was transferred from the memory card, the system block and force

values in the permanent memory are replaced and all retentive memory is cleared.

Creating a "Transfer" card using a card reader
To create a "Transfer" card using a card reader, follow these steps:

1. Insert a blank memory card into the memory card reader.

2.
selections:

"Properties"
"Startup"

(Right-click) the PLC

In the STEP 7 Basic programming device, in the "Project tree," make the following menu

In the dropdown menu for "Power-up mode," select "Warm restart - RUN."

e ——————

) PRl B0 Y Fii bl -Sei) w148

o e T re——

oI T rr P

3. Save the project.

60

S7-1200 Programmable controller

System Manual, 04/2009, A5E02486680-01

PLC concepts

3.4 Saving and restoring memory

In the STEP 7 Basic programming device, in the "Project tree," make the following menu
selections:

— (Right-click) SIMATIC Card Reader
"Properties"
— In the dropdown menu for "Card Type," select "Transfer."

Drag the Program Blocks from the offline project in the "Project tree" to the card reader.

Creating a "Transfer" card using a CPU and a card reader
To create a "Transfer" card using a CPU and a card reader, follow these steps:

1.
2.

Insert a blank memory card into the CPU.

In the STEP 7 Basic programming device, in the "Project tree," make the following menu
selections:

(Right-click) the PLC
"Properties"
"Startup”

In the dropdown menu for "Power-up mode," select "Warm restart - RUN."

3. Save the project.

4. Download the project to the CPU.

Note

Downloading a project to the CPU always creates a "Program" memory card. You must
use the CPU in conjunction with the card reader to create the "Transfer" memory card.

5. Insert the newly-created "Transfer" memory card into the memory card reader.

6. In the STEP 7 Basic programming device, in the "Project tree," make the following menu

selections:
— (Right-click) SIMATIC Card Reader
"Properties"

— In the dropdown menu for "Card Type," select "Transfer."

Using a "Transfer" card to load a project into a CPU
To use a "Transfer" card to load a project into a CPU, follow these steps:

1.

Power off the CPU.

2. Insert the "Transfer" memory card into the CPU.
3.
4. The project is transferred from the "Transfer" card to the CPU.

Power on the CPU.

The CPU is now in "MAINTENANCE Mode (Flashing Yellow LED).

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 61

PLC concepts

3.4 Saving and restoring memory

5. Remove the "Transfer" card from the CPU.
6. Power on the CPU.
The CPU goes to the RUN mode.

The entire project, which includes the user program, hardware configuration, and any forced
values, is loaded into the CPU.

Note

The "Transfer" memory card must be removed before you can place the CPU back into RUN
mode.

S7-1200 Programmable controller
62 System Manual, 04/2009, ASE02486680-01

Device configuration

You create the device configuration for your PLC by adding a CPU and additional modules to
your project.

Communications module (CM): Up to 3, inserted in slots 101, 102, and 103
CPU: Slot 1

Ethernet port of CPU

Signal board (SB): up to 1, inserted in the CPU

Signal module (SM) for digital or analog I/O: up to 8, inserted in slots 2 through 9
(CPU 1214C allows 8, CPU 1212C allows 2, CPU 1211C does not allow any)

®© 006

To create the device configuration,
add a device to your project.

Dwwices &

e |n the Portal view, select Mkt
"Devices & Networks" and click
"Add device".
¢ In the Project view, under the Project tree 1
project name, double-click "Add p.ias
new device". OO =
= | Projectl
B Add new device

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 63

Device configuration
4.1 Inserting a CPU

4.1 Inserting a CPU

You create your device configuration by inserting a CPU into your project. Selecting the CPU
from the "Add a new device" dialog creates the rack and CPU.

"Add a new device" dialog e

Device view of the hardware
configuration i

& Netwarkview [} Device view | w Catalog
w = ‘ ﬁ!" PETTIE “ HF

B O AL
¥ L Unapeciic O 1208
b g Tagnal hagsd

T
» moo
b e
T
4 {11} (X | WA
. . g Poperties %) infe | &) Diagnostics |
Sele_ctmg the QPU in the o |
Device view displays the CPU s snem 2 e 3
. . . w FROFIMET mtefuce
properties in the inspector atnery
WindOW. - W Inteace cannecied with
Tima |:,u|-m_1_-n.- = Sehest Kot cosnacied
P AROS "
AT
B i ppedid CoePlEn | L 'm
b Melbe gunaintons (FROL Faddemis 150 ied 0
I'I':jm Tabmet muah. -
Ll f s B
St s cloch mes = Wi IF riratin L
Ll i " 4 - o 1
Note

The CPU does not have a pre-configured IP address. You must manually assign an IP
address for the CPU during the device configuration. If your CPU is connected to a router on
the network, you also enter the IP address for a router.

S7-1200 Programmable controller
64 System Manual, 04/2009, ASE02486680-01

Device configuration
4.2 Configuring the operation of the CPU

4.2 Configuring the operation of the CPU

To configure the operational parameters for the CPU, select the CPU in the Device view
(blue outline around whole CPU), and use the "Properties" tab of the inspector window.

o Properties | 4] Info | o) Diageostics

Configuring the IP address

for the CPU and optional - " [———— .|
router =Lt
= im Intertace cannecied with
|I..:I:-wh S— £ Subest Wos cosnacied
v m =
s ppead cosnen | 4 IF pratoral
B P et atay [N Waddemds 157 0GB 0
mi Sebeetmaakl 85 VS 6
Tiemg o diayy
'.-;I:::;:-u.l-.l. e e IF ruaten

| o Properties (%) Infs |) Dlagnestios

Configuring the local outputs ===
for the CPU 2 o

Digitsl cutputs
| B PROIRET wearuce
|= pirepato
Ganernl Ryncon 50 CPUSIOR Use ssboznne walen -

¥ Diganl mprta

[srop Inapvaken
b Digial cutprata z [T —

hannih

B mibde B g AW

JulnmetE & vallus ol 1 s & B o STOF peanGs

Dhannall

You edit the properties to configure the following parameters:

o PROFINET interface: Sets the IP address for the CPU and time synchronization

e DI, DO, and Al: Configures the behavior of the local (on-board) digital and analog 1/0
e High-speed counters: Enables and configures the high-speed counters (HSC)

® Pulse generators: Enables and configures the pulse generators used for pulse-train
operations (PTO) and pulse-width modulation (PWM)

e Startup: Selects the behavior of the CPU following an off-to-on transition, such as to start
in STOP mode or to go to RUN mode after a warm restart

® Clock: Sets the time, time zone and daylight saving time
® Protection: Sets the read/write protection and password for accessing the CPU

® System and clock memory: Enables a byte for "system memory" functions (for a "first-
scan" bit, an "always-on" bit, and an "always-off" bit) and enables a byte for "clock
memory" functions (where each bit toggles on and off at a predefined frequency).

® Cycle time: Defines a maximum cycle time or a fixed minimum cycle time

® Communications load: Allocates a percentage of the scan cycle to be dedicated to
communication tasks

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 65

66

Device configuration

4.3 Adding modules fo the configuration

4.3 Adding modules to the configuration

Use the hardware catalog to add modules to the CPU. There are three types of modules:

® Signal modules (SM) provide additional digital or analog I/O points. These modules are

connected to the right side of the CPU.

e Signal boards (SB) provide just a few additional I/O points for the CPU. The SB is
installed on the front of the CPU.

Communication modules (CM) provide an additional communication port (RS232 or
RS485) for the CPU. These modules are connected to the left side of the CPU.

To insert a module into the hardware configuration, select the module in the hardware
catalog and either double-click or drag the module to the highlighted slot.

Module Select the module Insert the module Result
SM e .Jaa-.".:'.l b

]
i oo e :!.

aSeaichs L
 Filtey
¥ i Commurscatan medule
» @
¥ @ Sigoad band
—:'D{
= T O x VD
[GEST 221 1BF 000000
» D016 x 3VDE
l_‘m
¥ BN
[T
LT
B Al

SB

VIR S e R i
[ERSCRIRE, Ss—" :'E

w Catalog
S aaichn L
w Filtid
¥ i Communicaban madule
[Tt
= 3 higriad Bzard
= i DENDO2 x MWD
[6657 22300030008
b A0 1 3hi
(3T
(]

CM P — 5
borebbabobabioe e | A
w Catalog
e archs Hy WP
w Filid
= i Commurssatan medule

bW RN

= g aa8s

[w37 24510300

[Lot
¥ 3 Signad beand
L.]
L]]

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Device configuration

4.4 Configuring the parameters of the modules

4.4 Configuring the parameters of the modules

-To configure the operational parameters for the modules, select the module in the Device
view and use the "Properties" tab of the inspector window.

Configuring a signal module

Edit the properties to configure the following parameters:

o Digital inputs: Enables the —
individual inputs for pulse catch » Geners T .
(to stay on after a momentary =i R
pulse) through the next update of P— moa oi -k

the input process image izl f4-07 nis = i

¢ Digital outputs: Enables the
individual outputs to use a freeze Chansell
or substitute value on a transition s
from RUN mode to STOP mode i |k

¢ Analog inputs: Configures the " i s ;
parameters for individual inputs,
such as measurement type T Froprmies |4 info |) Blagnostics
(voltage or current), range and [

B GEnenw

smoothing, and to enable Ao inputs

underflow or overflow diagnostics ' @ byttt Lo

e Analog outputs: Configures the —
parameters for individual analog § Channet
outputs, such as output type
(voltage or current) and also to L e
enable diagnostics, such as short- Wikage et -1 5%
circuit (for voltage outputs) or Bcbing | Lo H eyche
overflow values (greater than CRR—T vl :
+32511 or less than -32512)

¢ 10/ diagnostic addresses: Configures the start address for the set of inputs and outputs
of the module

of Propeties %) Infe 4] Diagnostic

Configuring a signal board (SB)

Edit the properties to configure the following parameters:
o Digital inputs: Configures the

of Properties %) Info o) Dlagnostics

Benpral

individual inputs for both rising-edge ... sl s .
detection and falling-edge detection - &&= Sy
(associating each with an event and Meia san =

hardware interrupt) and for "pulse
catch" (to stay on after a momentary
pulse) through the next update of
the input process image

o Digital outputs: Enables the Erable riing tdge derain
individual outputs to freeze orusea =~ L -
substitute value on a transition from
RUN mode to STOP mode

harral

0 w1 e

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 67

Device configuration

4.4 Configuring the parameters of the modules

of Properties. %) Info |) Dlagnostics

e Analog outputs: Configures the

Genpral

output type (voltage or current) and
enables short-circuit diagnostics (for - EEEE==a
voltage outputs) and to freeze or 2 mtdiwnamsin

use a substitute value on a
transition from RUN mode to STOP
mode

¢ |O/diagnostic addresses: Configures
the start address for the set of
inputs and outputs of the module

Configuring a communication module (CM)

68

Edit the properties to configure the following parameters:

Chanral
.

Analog sutputy _

Rantoon i3 TPUSIE werp lut valoe -

Analeg sAparnpE oTa

of Properties (%) Info | 4] Diagnosticos

e Port configuration: Configures the S
communication parameters, such as . s
baud rate, parity, data bits, stop bits, =" ==

flow control, XON and XOFF
characters, and wait time i

e Transmit message configuration:
Enables and configures transmit
related options

e Receive message configuration:
Enables and configures the =il v b
message-start and message-end
parameters

Poy eondiguiston

B g Wi bba
Pasty b pansy
Onin b 0 buty powr characzer

Sinpbex 1

Ll

These configuration parameters can be changed by your program.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Device configuration

4.5

Creating a network connection

4.5 Creating a network connection

Use the "Network view" of Device configuration to create the network connections between
the devices in your project. After creating the network connection, use the "Properties" tab of
the inspector window to configure the parameters of the network.

Action

Result

devices to be connected.

Select "Network view" to display the

[Mermarha| L] cosneenans

me
L=t

& Mebtwoik view [Device wew
= o E: o =

Select the port on one device and
drag the connection to the port on
the second device.

Projeet]l = Devices & Matwoiks

[taimaria| L] Cosnecisns

POy
U EHEC

& Metwouik view [Device view |

- =: '-'Rt ipon -
.I
=l
LK
TR0 P
—— S

the network connection.

Release the mouse button to create

'411 Mermsrha | L] tosneenens

[T]
o e

& Metwoik view [ff Device view
= R o =

L]

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

69

Device configuration

4.6 Configuring a permanent IP address

4.6

Configuring a permanent IP address

Configuring the PROFINET interface

After you configure the rack with the CPU (Page 65) , you can configure parameters for the
PROFINET interface. To do so, click the green PROFINET box on the CPU to select the
PROFINET port. The "Properties" tab in the inspector window displays the PROFINET port.

.

(

1,-'

©) PROFINET port

Configuring the IP address

70

Ethernet (MAC) address: In a PROFINET network, each device is assigned a Media Access
Control address (MAC address) by the manufacturer for identification. A MAC address
consists of six groups of two hexadecimal digits, separated by hyphens (-) or colons (:), in
transmission order, (for example, 01-23-45-67-89-ab or 01:23:45:67:89:ab).

All devices must have a unique MAC address if on the same PROFINET network. If there
are two devices with the same MAC address on the same PROFINET network,
communications problems will result.

IP address: Each device must also have an Internet Protocol (IP) address. This address
allows the device to deliver data on a more complex, routed network.

Each IP address is divided into four 8-bit segments and is expressed in a dotted, decimal
format (for example, 211.154.184.16). The first part of the IP address is used for the Network
ID (What network are you on?), and the second part of the address is for the Host ID (unique
for each device on the network). An IP address of 192.168.x.y is a standard designation
recognized as part of a private network that is not routed on the Internet.

Subnet mask: A subnet is a logical grouping of connected network devices. Nodes on a
subnet tend to be located in close physical proximity to each other on a Local Area Network
(LAN). A mask (known as the subnet mask or network mask) defines the boundaries of an IP
subnet.

A subnet mask of 255.255.255.0 is generally suitable for a small local network. This means
that all IP addresses on this network should have the same first 3 octets, and the various
devices on this network are identified by the last octet (8-bit field). An example of this is to
assign a subnet mask of 255.255.255.0 and an IP addresses of 192.168.2.0 through
192.168.2.255 to the devices on a small local network.

The only connection between different subnets is via a router. If subnets are used, an IP
router must be employed.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Device configuration

4.6 Configuring a permanent IP address

IP router: Routers are the link between LANs. Using a router, a computer in a LAN can send
messages to any other networks, which might have other LANs behind them. If the
destination of the data is not within the LAN, the router forwards the data to another network
or group of networks where it can be delivered to its destination.

Routers rely on IP addresses to deliver and receive data packets.

IP addresses
properties: In the
Properties window,
select the "Ethernet
address" configuration
entry. The TIA Portal
displays the Ethernet
address configuration
dialog, which
associates the
software project with
the IP address of the
CPU that will receive
that project.

Eikganel affipiies

of Faopeities %] Infa | 4l Biagnastics

Ethrmrt addin ez
ki, mrred

e Inteaface connecied with

Bobeat tick conwcind

IP paotecal
addrann
Felnay magh

4 A e suslrert

thit e

Note

The CPU does not have a pre-configured IP address. You must manually assign an IP
address for the CPU. If your CPU is connected to a router on a network, you must also enter
the router's IP address. All IP addresses are configured when you download the project.

Refer to "Assigning IP addresses to programming and network devices (Page 210)" for more

information.

The following table defines the parameters for the IP address:

Parameter

Description

Subnet

Name of the Subnet to which the device is connected. Click the "Add new subnet"
button to create a new subnet. "Not connected" is the default.
Two connection types are possible:

e The "Not connected" default provides a local connection.
e A subnet is required when your network has two or more devices.

IP protocol

IP address

Assigned IP address for the CPU

Subnet mask

Assigned subnet mask

Use IP router

Click the checkbox to indicate the use of an IP router

Router address

Assigned IP address for the router, if applicable

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-0

1

71

Device configuration

4.6 Configuring a permanent IP address

S7-1200 Programmable controller
72 System Manual, 04/2009, ASE02486680-01

Programming concepts

5.1 Guidelines for program design

When designing a PLC system, you can choose from a variety of methods and criteria. The
following general guidelines can apply to many design projects. Of course, you must follow
the directives of your own company's procedures and the accepted practices of your own
training and location.

Recommended steps

Tasks

Partition your process
or machine

Divide your process or machine into sections that have a level of independence from each other.
These partitions determine the boundaries between controllers and influence the functional
description specifications and the assignment of resources.

Create the functional
specifications

Write the descriptions of operation for each section of the process or machine, such as the /O
points, the functional description of the operation, the states that must be achieved before
allowing action for each actuator (such as a solenoid, a motor, or a drive), a description of the
operator interface, and any interfaces with other sections of the process or machine.

Design the safety
circuits

Identify any equipment that might require hard-wired logic for safety. Remember that control
devices can fail in an unsafe manner, which can produce unexpected startup or change in the
operation of machinery. Where unexpected or incorrect operation of the machinery could result in
physical injury to people or significant property damage, consider the implementation of
electromechanical overrides (which operate independently of the PLC) to prevent unsafe
operations. The following tasks should be included in the design of safety circuits:

¢ |dentify any improper or unexpected operation of actuators that could be hazardous.

¢ Identify the conditions that would assure the operation is not hazardous, and determine how
to detect these conditions independently of the PLC.

¢ Identify how the PLC affects the process when power is applied and removed, and also
identify how and when errors are detected. Use this information only for designing the normal
and expected abnormal operation. You should not rely on this "best case" scenario for safety
purposes.

e Design the manual or electromechanical safety overrides that block the hazardous operation
independent of the PLC.

e Provide the appropriate status information from the independent circuits to the PLC so that
the program and any operator interfaces have necessary information.

Identify any other safety-related requirements for safe operation of the process.

Specify the operator
stations

Based on the requirements of the functional specifications, create the following drawings of the
operator stations:

e Overview drawing that shows the location of each operator station in relation to the process
or machine.

e Mechanical layout drawing of the devices for the operator station, such as display, switches,
and lights.

¢ Electrical drawings with the associated 1/O of the PLC and signal modules.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 73

Programming concepts

5.1 Guidelines for program design

Recommended steps

Tasks

Create the
configuration drawings

Based on the requirements of the functional specification, create configuration drawings of the
control equipment:

e Overview drawing that shows the location of each PLC in relation to the process or machine.

e Mechanical layout drawing of each PLC and any I/O modules, including any cabinets and
other equipment.

e Electrical drawings for each PLC and any I/O modules, including the device model numbers,
communications addresses, and I/O addresses.

Create a list of
symbolic names

Create a list of symbolic names for the absolute addresses. Include not only the physical I/O
signals, but also the other elements (such as tag names) to be used in your program.

5.1.1 Structuring your user program

When you create a user program for the automation tasks, you insert the instructions for the
program into code blocks:

An organization block (OB) responds to a specific event in the CPU and can interrupt the
execution of the user program. The default for the cyclic execution of the user program
(OB 1) provides the base structure for your user program and is the only code block
required for a user program. If you include other OBs in your program, these OBs
interrupt the execution of OB 1. The other OBs perform specific functions, such as for
startup tasks, for handling interrupts and errors, or for executing specific program code at
specific time intervals.

A function block (FB) is a subroutine that is executed when called from another code
block (OB, FB, or FC). The calling block passes parameters to the FB and also identifies
a specific data block (DB) that stores the data for the specific call or instance of that FB.
Changing the instance DB allows a generic FB to control the operation of a set of
devices. For example, one FB can control several pumps or valves, with different
instance DBs containing the specific operational parameters for each pump of valve.

A function (FC) is a subroutine that is executed when called from another code block
(OB, FB, or FC). The FC does not have an associated instance DB. The calling block
passes parameters to the FC. The output values from the FC must be written to a
memory address or to a global DB.

Choosing the type of structure for your user program

Based on the requirements of your application, you can choose either a linear structure or a
modular structure for creating your user program:

74

A linear program executes all of the instructions for your automation tasks in sequence,
one after the other. Typically, the linear program puts all of the program instructions into
the OB for the cyclic execution of the program (OB 1).

A modular program calls specific code blocks that perform specific tasks. To create a
modular structure, you divide the complex automation task into smaller subordinate tasks
that correspond to the technological functions of the process. Each code block provides
the program segment for each subordinate task. You structure your program by calling
one of the code blocks from another block.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming concepts
5.1 Guidelines for program design

Linear structure: Modular structure:
\
+— +—

By creating generic code blocks that can be reused within the user program, you can simplify
the design and implementation of the user program. Using generic code blocks has a
number of benefits:

® You can create reusable blocks of code for standard tasks, such as for controlling a pump
or a motor. You can also store these generic code blocks in a library that can be used by
different applications or solutions.

e \When you structure the user program into modular components that relate to functional
tasks, the design of your program can be easier to understand and to manage. The
modular components not only help to standardize the program design, but can also help
to make updating or modifying the program code quicker and easier.

® Creating modular components simplifies the debugging of your program. By structuring
the complete program as a set of modular program segments, you can test the
functionality of each code block as it is developed.

® (Creating modular components that relate to specific technological functions can help to
simplify and reduce the time involved with commissioning the completed application.

5.1.2 Using blocks to structure your program

By designing FBs and FCs to perform generic tasks, you create modular code blocks. You
then structure your program by having other code blocks call these reusable modules. The
calling block passes device-specific parameters to the called block.

. ®
Calling block OB, FB, FC OB, FB, FC
Called (or interrupting) block ®
Program execution @ l

Operation that calls another block
Program execution ®

Block end (returns to calling block)
v
l \ ®

When a code block calls another code block, the CPU executes the program code in the
called block. After execution of the called block is complete, the CPU resumes the execution
of the calling block.

®e 0o w>

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 75

Programming concepts
5.1 Guidelines for program design

Processing continues with ® } @ }
execution of the instruction that > > — ’
follows after the block call. 0B 1 FB1 « FC1
You can nest the block calls for a [pe
more modular structure.
® Startof cycle 2 [1| 1 1| Fca
® Nesting depth s ‘ 58 1
N) FC1 DB 1

Creating reusable code blocks

Use the "Add new block" dialog .

Ha~e

under "Program blocks" in the foc 1]

Project navigator to create OBs,

FBs, FCs, and global DBs. 5 :u_'::' b =

When you create code block, you | e o

select the programming language e T

for the block. You do not select a I+ o

language for a DB because it fancion [T nars Fat bcke o Bibrvacaet chats ek e

[

only stores data. e

mars

Drate biod,
il

® Further infoimation

| v Al marws ok pen o Cance

5.1.2.1 Organization block (OB)

Organization blocks provide structure for your program. They serve as the interface between
the operating system and the user program. OBs are event driven. An event, such as a
diagnostic interrupt or a time interval, will cause the CPU to execute an OB. Some OBs have
predefined start events and behavior.

The cyclic OB contains your main program. You can include more than one cyclic OB in your
user program. During RUN mode, the cyclic OBs execute at the lowest priority level and can
be interrupted by all other types of program processing. (The startup OB does not interrupt
the cyclic OB because the CPU executes the startup OB before going to RUN mode.)

After finishing the processing of the cyclic OBs, the CPU immediately executes the cyclic OB
again. This cyclic processing is the "normal" type of processing used for programmable logic
controllers. For many applications, the entire user program is located in a single cyclic OB.

S7-1200 Programmable controller
76 System Manual, 04/2009, ASE02486680-01

Programming concepts

5.1 Guidelines for program design

You can create other OBs to perform specific functions, such as startup tasks, for handling
interrupts and errors, or for executing specific program code at specific time intervals. These
OBs interrupt the execution of the program cycle OBs.

Use the "Add new block” dialog to |

create new OBs in your user Hasa

program. et

Depending on their respective

priority levels, one OB can interrupt =] — =
another OB. Interrupt handling is e o
always event-driven. When such an =t
event occurs, the CPU interrupts £ e

the scanning of the user program e Ola s craptan

and calls the OB that was = ooy e e
configured to handle that event. - ﬁ{a‘?.‘iﬁéﬁ'ﬂﬂiﬁimﬁ.'”
Atfter finishing the execution of the =~

interrupting OB, the CPU resumes 4

the execution of the user program

at the point of interruption. J

The CPU determines the order for i —

handling interrupt events by a R e {
priority assigned to each OB. |1z At s o mpen . T

Each event has a particular servicing priority. Several interrupt events can be combined into
priority classes. For more information, refer to the PLC concepts chapter section on
execution of the user program (Page 35).

Creating an additional OB within a class of OB

You can create multiple OBs for your use program, even for the cyclic and startup OB
classes. Use the "Add new block" dialog to create a OB. Enter the name for your OB and
provide an OB number greater than 200.

If you create multiple cyclic OBs for your user program, the CPU executes each cyclic OB in
numerical sequence, starting with the main cycle OB (default; OB 1). For example: after first
cyclic OB (OB1) finishes, the CPU executes the second cyclic OB (such as OB 2 or OB 200).

Configuring the operation of an OB

_--_Pr:-prrtln ‘_-., Info) Dlagnosticy W

You can modify the operational
parameters for an OB. For example,
you can configure the time parameter
for a time-delay OB or for a cyclic OB.

LEneral

Geneial

Mame M

Eanmargensame OF e

Bpe 08

L tmbar |
Eveng cdary Frogres. oycle

Langemge LAL -

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 77

Programming concepts

5.1 Guidelines for program design

5.1.2.2

5.1.2.3

Function (FC)

A function (FC) is a fast-executing code block that typically performs a specific operation on
a set of input values. The FC stores the results of this operation in memory locations.

Use FCs to perform the following tasks:
® To perform standard and reusable operations, such as for mathematical calculations.

® To perform technological functions, such as for individual controls using bit logic
operations.

An FC can also be called several times at different points in a program. This reuse simplifies
the programming of frequently recurring tasks.

Unlike a function block (FB), an FC does not have an associated instance data block (DB).
The FC uses the local data stack for the temporary data used to calculate the operation. The
temporary data is not saved. To store data permanently, assign the output value to a global
memory location, such as M memory or to a global DB.

Function block (FB)

A function block (FB) is a code block whose calls can be programmed via block parameters.
FBs have variable memory that is located in a data block (DB), or "instance" DB. The
instance DB provides a block of memory that is associated with that instance (or call) of the
FB and stores data after the FB finishes. You can associate different instance DBs with
different calls of the FB. The instance DBs allow you to use one generic FB to control
multiple devices. You structure your program by having one code block make a call to an FB
and an instance DB. The CPU then executes the program code in that FB, and stores the
block parameters and the static local data in the instance DB. When the execution of the FB
finishes, the CPU returns to the code block that called the FB. The instance DB retains the
values for that instance of the FB.

Reusable code blocks with associated memory

You typically use an FB to control the operation for tasks or devices that do not finish their
operation within one scan cycle. To store the operating parameters so that they can be
quickly accessed from one scan to the next, each FB in your user program has one or more
instance DBs. When you call an FB, you also open an instance DB that stores the values of
the block parameters and the static local data for that call or "instance" of the FB. The
instance DB stores these values after the FB finishes.

By designing the FB for generic control tasks, you can reuse the FB for multiple devices by
selecting different instance DBs for different calls of the FB.

An FB stores the input (IN), output (OUT), and in/out (IN_OUT) parameters in an instance
DB.

Assigning initial values

78

If the input, output, or in/out parameters of a function block (FB) are not assigned with
values, the values stored in the instance data block (DB) will be used. In some cases, you
must assign parameters.

You can assign initial values to the parameters in the FB interface. These values are
transferred to the associated instance DB. If you do not assign parameters, the values
currently stored in the instance DB will be used.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming concepts
5.1 Guidelines for program design

Using a single FB with multiple instance DBs

The following figure shows an OB that calls one FB three times, using a different data block
for each call. This structure allows one generic FB to control several similar devices, such as
motors, by assigning a different instance data block for each call for the different devices.
Each instance DB stores the data (such as speed, ramp-up time, and total operating time)
for an individual device. In this example, FB 22 controls three separate devices, with DB 201
storing the operational data for the first device, DB 202 storing the operational data for the
second device, and DB 203 storing the operational data for the third device.

DB 201
OB1
FB 22
FB 22, DB 201 DB 202
FB 22, DB 202
FB 22, DB 203
DB 203

5.1.24 Data block (DB)

You create data blocks (DB) in your user program to store data for the code blocks. All of the
program blocks in the user program can access the data in a global DB, but an instance DB
stores data for a specific function block (FB).

Your user program can store data in the specialized memory areas of the CPU, such as for
the inputs (1), outputs (Q), and bit memory (M). In addition, you can use a data block (DB) for
fast access to data stored within the program itself. You can define a DB as being read-only.

The data stored in a DB is not deleted when the data block is closed or the execution of the
associated code block comes to an end. There are two types of DBs:

® A global DB stores data for the code blocks in your program. Any OB, FB, or FC can
access the data in a global DB.

® An instance DB stores the data for a specific FB. The structure of the data in an instance
DB reflects the parameters (Input, Output, and InOut) and the static data for the FB. (The
Temp memory for the FB is not stored in the instance DB.)

Note

Although the instance DB reflects the data for a specific FB, any code block can access
the data in an instance DB.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 79

Programming concepts

5.1 Guidelines for program design

5.1.3 Selecting the programming language

You have the option of choosing either the LAD (ladder logic) or FBD (Function Block
Diagram) programming language.

LAD programming language
LAD is a graphical programming language. The representation is based on circuit diagrams.

gt k™ “Ori* The elements of a circuit
— | 1 i} diagram, such as normally
closed and normally open
contacts, and coils are
linked to form networks.

To create the logic for complex operations, you can insert branches to create the logic for
parallel circuits. Parallel branches are opened downwards or are connected directly to the
power rail. You terminate the branches upwards.

LAD provides "box" instructions for a variety of functions, such as math, timer, counter, and
move.

Consider the following rules when creating a LAD network:

o Every LAD network must terminate with a coil or a box instruction. Do not terminate a
network with either a Compare instruction or an Edge-detection (Positive-edge or
Negative-edge) instruction.

® You cannot create a branch that could result in a power flow in the reverse direction.

A B C D 4
|| | | | | | | (
11 11 ! | \)
E F
|| x |
[[
-
H G
|] II

A B Cc 4
(
11 I ! \)

S7-1200 Programmable controller
80 System Manual, 04/2009, ASE02486680-01

Programming concepts

5.1 Guidelines for program design

Function Block Diagram (FBD) programming language

Like LAD, FBD is also a graphical programming language. The representation of the logic is
based on the graphical logic symbols used in Boolean algebra.

Mathematical functions and other complex =

functions can be represented directly in Gy — L
conjunction with the logic boxes. To create 0" — — "
the logic for complex operations, insert '

Talart” O o .

parallel branches between the boxes.

Understanding EN and ENO for the "box" instructions

Both LAD and FBD use "power flow" (EN and ENO) for some "box" instructions. Certain
instructions (such as math and move instructions) display parameters for EN and ENO.
These parameters relate to power flow and determine whether the instruction is executed
during that scan.

e EN (Enable In) is a Boolean input for boxes in LAD and FBD. Power flow (EN = 1) must
be present at this input for the box instruction to be executed.

e ENO (Enable Out) is a Boolean output for boxes in LAD and FBD. If the EN input of a
LAD box is connected directly to the left power rail then box will always be executed. If
the box has power flow at the EN input and the box executes its function without error,
then the ENO output passes power flow (ENO = 1) to the next element. If an error is
detected in the execution of the box instruction, then power flow is terminated (ENO = 0)
at the box instruction that generated the error.

Program editor Inputs/outputs Operands Data type

LAD EN, ENO Power flow BOOL

FBD EN I, I:P, Q, M, DB, Temp, Power Flow BOOL
ENO Power Flow BOOL

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 81

Programming concepts

5.2 Copy profection

5.2 Copy protection

Copy or "know-how" protection allows you to prevent one or more code blocks (OB, FB, or
FC) or a data block (DB) in your program from unauthorized access. You create a password
to limit access to the code block.

When you configure a block for (Edit. View Intent Onli
"know-how" protection, the code Open object

within the block cannot be accessed I“ ; e
except after entering the password. S oy L‘_"‘_':
To copy-protect the block, select the | o .. 22
"Know how protection" command Haraia 5

from the "Edit" menu. You then enter

a password that allows access to the

W Find ard replace Cirl+F

block.

'-g__ Campils Carl+B

Enowhowprotection # Enable know-how pratection._),
I i, 4 L

G Propertie: Alt+Erntar

The password-protection prevents unauthorized reading or modification of the code block.
Without the password, you can read only the following information about the code block:

Block title, block comment, and block properties
Transfer parameters (IN, OUT, IN_OUT, Return)
Call structure of the program

Global tags in the cross references (without information on the point of use), but local
tags are hidden

Downloading the elements of your program

You can download the elements of your project from the programming device to the CPU.
When you download a project, the CPU stores the user program (OBs, FCs, FBs and DBs)
in permanent memory.

You can download your project ok e el g
from the programming device to !) ISR e R
your CPU from any of the

following locations:

82

PR raeadn b ladeg W Sas Dopn SR
v

"Project tree": Right-click the
program element, and then
click the context-sensitive

llDownloadll SeleCtIOI’I. 1 B A LT R o W el LT e
e Eerond V4 a4 AT B e

"Online" menu: Click the ﬁ - : T

"Download to device"

selection.

Toolbar: Click the "Download e
to device" icon.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming concepts

5.3 Debugging and testing the program

5.3 Debugging and testing the program

You use "watch tables" for monitoring and modifying the values of a user program being
executed by the online CPU. You can create and save different watch tables in your project
to support a variety of test environments. This allows you to reproduce tests during
commissioning or for service and maintenance purposes.

With a watch table, you can monitor and interact with the CPU as it executes the user
program. You can display or change values not only for the tags of the code blocks and data
blocks, but also for the memory areas of the CPU, including the inputs and outputs (I and Q),
peripheral inputs and outputs (I:P and Q:P), bit memory (M), and data blocks (DB).

With the watch table, you can enable the peripheral outputs (Q:P) of a CPU in STOP mode.
For example, you can assign specific values to the outputs when testing the wiring for the
CPU.

The watch table also allows you to "force" or set a tag to a specific value. Forced values are
applied once per scan. They can be changed during program execution but for outputs (Qs),
the forced values will be written at the end of the scan. For more information about forcing,
see the section on forcing values in the CPU (Page 278) in the "Online and Diagnostics"
chapter.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 83

Programming concepts

5.3 Debugging and testing the program

S7-1200 Programmable controller
84 System Manual, 04/2009, A5E02486680-01

Programming instructions

6.1 Basic instructions

6.1.1 Bit logic

LAD contacts

You can connect contacts to other contacts and create your own combination logic. If the

input bit you specify uses memory identifier | (input) or Q (output), then the bit value is read

from the process-image register. The physical contact signals in your control process are
wired to | terminals on the PLC. The PLC system scans the wired input signals and
continuously updates the corresponding state values in the process-image input register.

You can specify an immediate read of a physical input using ":P" following the | offset
(example: "%I13.4:P"). For an immediate read, the bit data values are read directly from the

physical input instead of the process image. An immediate read does not update the process

image.
lllNll nan
—_ - -/
Normally Open Normally Closed
Parameter Data type Description
IN BOOL Assigned bit

® The Normally Open contact is closed (ON) when the assigned bit value is equal to 1.

® The Normally Closed contact is closed (ON) when the assigned bit value is equal to 0.

® Contacts connected in series create AND logic networks.

® Contacts connected in parallel create OR logic networks.

FBD, AND, OR, and XOR boxes

In FBD programming, LAD contact networks are transformed into AND (&), OR (>=1), and
exclusive OR (x) box networks where you can specify bit values for the box inputs and

outputs. You may also connect to other logic boxes and create your own logic combinations.

After the box is placed in your network, you can drag the "Insert binary input" tool from the
"Favorites" toolbar or instruction tree and then drop it onto the input side of the box to add
more inputs. You can also right-click on the box input connector and select "Insert input".

Box inputs and output can be connected to another logic box, or you can enter a bit address

or bit symbol name for an unconnected input. When the box instruction is executed, the

current input states are applied to the binary box logic and, if true, the box output will be true.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

85

Programming instructions

6.1 Basic instructions

L 3=
IllN-III_ IllN-III_ N \ H
|||N2||) - ”lNE“ — |N1 -
D — L
AND logic OR logic XOR logic
Parameter Data type Description
IN1, IN2 BOOL Input bit

e Allinputs of an AND box must be TRUE for the output to be TRUE.
® Any input of an OR box must be TRUE for the output to be TRUE.
® An odd number of the inputs of an XOR box must be TRUE for the output to be TRUE.

NOT logic inverter

For FBD programming, you can drag the "Negate binary input" tool from the "Favorites"
toolbar or instruction tree and then drop it on an input or output to create a logic inverter on
that box connector.

—{NOT |- - 4 °
-1 1= =1 (=3
LAD: NOT contact inverter FBD: AND box with one FBD: AND box with inverted
inverted logic input logic input and output

The LAD NOT contact inverts the logical state of power flow input.
e |[f there is no power flow into the NOT contact, then there is power flow out.

o |[f there is power flow into the NOT contact, then there is no power flow out.

LAD output coil

The coil output instruction writes a value for an output bit. If the output bit you specify uses
memory identifier Q, then the CPU turns the output bit in the process-image register on or
off, setting the specified bit equal to power flow status. The output signals for your control
actuators are wired to the Q terminals of the S7-1200. In RUN mode, the CPU system
continuously scans your input signals, processes the input states according to your program
logic, and then reacts by setting new output state values in the process-image output
register. After each program execution cycle, the CPU system transfers the new output state
reaction stored in the process-image register to the wired output terminals.

You can specify an immediate write of a physical output using ":P" following the Q offset
(example: "%Q3.4:P"). For an immediate write, the bit data values are written to the process
image output and directly to physical output.

"adT” "auT”
— —/
Output call Inverted output coil

S7-1200 Programmable controller
86 System Manual, 04/2009, ASE02486680-01

Programming instructions
6.1 Basic instructions

Parameter Data type Description
ouT BOOL Assigned bit

e |[f there is power flow through an output coil, then the output bit is set to 1.
e |f there is no power flow through an output coil, then the output coil bit is set to 0.
e |[f there is power flow through an inverted output coil, then the output bit is set to 0.

e |f there is no power flow through an inverted output coil, then the output bit is set to 1.

FBD output assignment box

In FBD programming, LAD coils are transformed into assignment (= and /=) boxes where
you specify a bit address for the box output. Box inputs and outputs can be connected to
other box logic or you can enter a bit address.

ouT” “uT" ouT"
S T —
- - - - = o
Output assignment Inverted output Output assignment
assignment with inverted output
Parameter Data type Description
ouT BOOL Assigned bit

e |f the output box inputis 1, then the OUT bit is set to 1.
e |f the output box input is 0, then the OUT bit is set to 0.
e |f the inverted output box input is 1, then the OUT bit is set to 0.
e |f the inverted output box input is 0, then the OUT bit is set to 1.

6.1.1.1 Set and reset instructions

S and R: Set and Reset 1 bit

® \When S (Set) is activated, then the data value at the OUT address is set to 1. When S is
not activated, OUT is not changed.

® When R (Reset) is activated, then the data value at the OUT address is set to 0. When R
is not activated, OUT is not changed.

® These instructions can be placed anywhere in the network.

LAD: Set LAD: Reset FBD: Set FBD: Reset
||I:IL|T|| Ill:ILITll '\:l:JT"] ...DUT"
5 [R 1
[5 } _iﬂ]_ CTET — = M - -

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 87

Programming instructions

6.1 Basic instructions

Parameter Data type Description
IN (or connect to contact/gate logic) BOOL Bit location to be monitored
ouT BOOL Bit location to be set or reset

SET_BF and RESET_BF: Set and Reset Bit Field

LAD: SET_BF LAD: RESET_BF FBD: SET_BF FBD: RESET_BF
"auT "ouT “ouT “ouT”
[SET_BF | | RESET_BF |
—{SET_BFH —{ RESET_BF) N —En
v Mt " :N' | et -.h'l

Parameter Data type Description
n Constant Number of bits to write
ouT BOOL Starting address of bit field

e When SET_BF is activated, a data value of 1 is assigned to "n" bits starting at address
OUT. When SET_BF is not activated, OUT is not changed.

e RESET_BF writes a data value of 0 to "n" bits starting at address OUT. When RESET_BF
is not activated, OUT is not changed.

® These instructions must be the right-most instruction in a branch.

RS and SR: Set-dominant and Reset-dominant bit latches

LAD/FBD: RS LAD/FBD: SR
"guT" “ouT"
As | TSR

- R -

51 0~ —R1 0~
Parameter Data type Description
S, $1 BOOL Set input; 1 indicates dominance
R, R1 BOOL Reset input; 1 indicates dominance
ouT BOOL Assigned bit output "OUT"
Q BOOL Follows state of "OUT" bit

® RS is a set dominant latch where the set dominates. If the set (S1) and reset (R) signals
are both true, the output address OUT will be 1.

® SRis a reset dominant latch where the reset dominates. If the set (S) and reset (R1)
signals are both true, the output address OUT will be 0.

e The OUT parameter specifies the bit address that is set or reset. The optional OUT
output Q reflects the signal state of the "OUT" address.

S7-1200 Programmable controller
88 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.1 Basic instructions

Instruction S1 R "OUT" bit

RS 0 0 Previous state
0 1 0
1 0 1
1 1 1
S R1

SR 0 0 Previous state
0 1 0
1 0 1
1 1 0

6.1.1.2 Positive and negative edge instructions

Positive and Negative transition detectors

P contact: LAD N contact: LAD P box: FBD N box: FBD
I "INt I I
— P —N- P -
M_BIT M_BIT "M_BIT" "M_BIT"
P coil: LAD N coil: LAD P=box: FBD N= box: FBD
III:ILIT“ ”l:Il_IT“ “DI_IT“ “I:ILIT“
—(P —{(N - = N-
"M_BIT" "M_BIT" - - — -
"M_BIT" "M_BIT"

P_TRIG: LAD\FBD N_TRIG: LAD\FBD

P_TRIG H_TRIG
— CLE - — CLEK oFr
"M_BIT" "M BIT"
Parameter Data type Description
M_BIT BOOL Memory bit in which the previous state of the input is saved
IN BOOL Input bit whose transition edge is to be detected
ouT BOOL Output bit which indicates a transition edge was detected
CLK BOOL Power flow or input bit whose transition edge is to be detected
Q BOOL Output which indicates an edge was detected

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

Programming instructions

6.1 Basic instructions

90

P contact:
LAD

N contact:
LAD

P box:
FBD

N box:
FBD

P coil:
LAD

N coil:
LAD

P= box:
FBD

N= box:
FBD

P_TRIG:
LAD/FBD

N_TRIG
(LAD/FBD)

The state of this contact is TRUE when a positive transition (OFF-to-ON) is
detected on the assigned "IN" bit. The contact logic state is then combined
with the power flow in state to set the power flow out state. The P contact
can be located anywhere in the network except the end of a branch.

The state of this contact is TRUE when a negative transition (ON-to-OFF)
is detected on the assigned input bit. The contact logic state is then
combined with the power flow in state to set the power flow out state. The
N contact can be located anywhere in the network except the end of a
branch.

The output logic state is TRUE when a positive transition (OFF-to-ON) is
detected on the assigned input bit. The P box can only be located at the
beginning of a branch.

The output logic state is TRUE when a negative transition (ON-to-OFF) is
detected on the assigned input bit. The N box can only be located at the
beginning of a branch.

The assigned bit "OUT" is TRUE when a positive transition (OFF-to-ON) is
detected on the power flow entering the coil. The power flow in state
always passes through the coil as the power flow out state. The P coil can
be located anywhere in the network.

The assigned bit "OUT" is TRUE when a negative transition (ON-to-OFF)
is detected on the power flow entering the coil. The power flow in state
always passes through the coil as the power flow out state. The N coil can
be located anywhere in the network.

The assigned bit "OUT" is TRUE when a negative transition (OFF-to-ON)
is detected on the logic state at the box input connection or on the input bit
assignment if the box is located at the start of a branch. The input logic
state always passes through the box as the output logic state. The P= box
can be located anywhere in the branch.

The assigned bit "OUT" is TRUE when a negative transition (ON-to-OFF)
is detected on the logic state at the box input connection or on the input bit
assignment if the box is located at the start of a branch. The input logic
state always passes through the box as the output logic state. The N= box
can be located anywhere in the branch.

The Q output power flow or logic state is TRUE when a positive transition
(OFF-to-ON) is detected on the CLK input state (FBD) or CLK power flow
in (LAD). In LAD, the P_TRIG instruction cannot be located at the
beginning or end of a network. In FBD, the P_TRIG instruction can be
located anywhere except the end of a branch.

The Q output power flow or logic state is TRUE when a negative transition
(ON-to-OFF) is detected on the CLK input state (FBD) or CLK power flow
in (LAD). In LAD, the N_TRIG instruction cannot be located at the
beginning or end of a network. In FBD, the P_TRIG instruction can be
located anywhere except the end of a branch.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions
6.1 Basic instructions

All edge instructions use a memory bit (M_BIT) to store the previous state of the input signal
being monitored. An edge is detected by comparing the state of the input with the state of
the memory bit. If the states indicate a change of the input in the direction of interest, then an
edge is reported by writing the output TRUE. Otherwise, the output is written FALSE.

Note

Edge instructions evaluate the input and memory-bit values each time they are executed,
including the first execution. You must account for the initial states of the input and memory
bit in your program design either to allow or to avoid edge detection on the first scan.

Because the memory bit must be maintained from one execution to the next, you should use
a unique bit for each edge instruction, and you should not use this bit any other place in your
program. You should also avoid temporary memory and memory that can be affected by
other system functions, such as an 1/0 update. Use only M, global DB, or Static memory for
the M_BIT.

6.1.2 Timers

You use the timer instructions to create programmed time delays:

® TP: The Pulse timer generates a pulse with a preset width time.

® TON: The ON-delay timer output Q is set to ON after a preset time delay.

o TOF: The OFF-delay timer output Q is reset to OFF after a preset time delay.

e TONR: The ON-delay Retentive timer output is set to ON after a preset time delay.
Elapsed time is accumulated over multiple timing periods until the R input is used to reset
the elapsed time.

® RT: Reset a timer by clearing the time data stored in the specified timer instance data
block.

Each timer uses a structure stored in a data block to maintain timer data. You assign the
data block when the timer instruction is placed in the editor.

When you place timer instructions in a function block, you can select the Multi-instance data
block option, the timer structure names can be different with separate data structures, but
the timer data is contained in a single data block and does not require a separate data block
for each timer. This reduces the processing time and data storage necessary for handling
the timers. There is no interaction between the timer data structures in the shared Multi-
instance data block.

Note

Although not typical, you can assign the same Single-instance timer structure name to
multiple timer instructions, thus sharing the structure data among the multiple timer
instructions. You must account for any interaction resulting from a shared structure in your
program design.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 91

Programming instructions
6.1 Basic instructions

LAD
“Tiemer nams” TP, TON, and TOF timers have the same input and output
TP | parameters.
Tne
- M 1) -
{PT ET|
O T— The TONR timer has the additional reset input parameter R.
TP_"F' Create you own "Timer name" that names the timer Data Block
Jin oL and describes the purpose of this timer in your process.
=R ET|
{PT
"Timer name" The RT instruction resets the timer data for the specified timer.
—[RT]
Parameter Data type Description
IN BOOL Enable timer input
R BOOL Reset TONR elapsed time to zero
PT TIME Preset time value input
Q BOOL Timer output
ET TIME Elapsed time value output
Timer data block DB Specify which timer to reset with the RT instruction

Parameter IN starts and stops the timers:
® The 0 to 1 transition of parameter IN starts timers TP, TON, and TONR.
® The 1 to 0 transition of parameter IN starts timer TOF.
Effect of value changes in the PT and IN parameters:
o TP:
— Changing PT has no effect while the timer runs
— Changing IN has no effect while the timer runs
e TON:
— Changing PT has no effect while the timer runs
— Changing IN to FALSE, while the timer runs, resets and stops the timer
e TOF:
— Changing PT has no effect while the timer runs

— Changing IN to TRUE, while the timer runs, resets and stops the timer

S7-1200 Programmable controller
92 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.1 Basic instructions

e TONR:

— Changing PT has no effect while the timer runs, but has an effect when the timer
resumes.

— Changing IN to FALSE, while the timer runs, stops the timer but does not reset the
timer. Changing IN back to TRUE will cause the timer to start timing from the
accumulated time value.

TIME values

PT (preset time) and ET (elapsed time) values are stored in memory as signed double
integers that represent milliseconds of time. TIME data uses the T# identifier and can be
entered as a simple time unit "T#200ms" or as compound time units "T#2s_200ms".

Data type Size Valid number ranges
TIME 32 bits T#-24d_20h_31m_23s_648ms to T#24d_20h_31m_23s_647ms

Stored as -2,147,483,648 ms to +2,147,483,647 ms

TP: Pulse timing diagram

IN
Q A
PT PT PT
ET
PT T

TON: ON-delay timing diagram

L

IN

ET
PT T

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 93

Programming instructions

6.1 Basic instructions

6.1.3

94

TOF: OFF-delay timing diagram

IN
Q
PT | PT
ET
PTT

TONR: ON-delay Retentive timing diagram

S e N 1

R
[
Q
]
PT
ET
Counters

You use the counter instructions to count internal program events and external process
events:

® CTU is a count up counter.
e (CTD is a count down counter.
e CTUD is a count up and down counter.

Each counter uses a structure stored in a data block to maintain counter data. You assign
the data block when the counter instruction is placed in the editor. These instructions use
software counters whose maximum counting rate is limited by the execution rate of the OB
they are placed in. For faster external counting operations, see the CTRL_HSC instruction.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions
6.1 Basic instructions

When you place counter instructions in a function block, you can select the Multi-instance
data block option, the counter structure names can be different with separate data
structures, but the counter data is contained in a single data block and does not require a
separate data block for each counter. This reduces the processing time and data storage
necessary for the counters. There is no interaction between the counter data structures in
the shared Multi-instance data block.

Note

Although not typical, you can assign the same Single-instance counter structure name to
multiple counter instructions of the same size, thus sharing the structure data among the
multiple counter instructions. You must account for any interaction resulting from a shared
structure in your program design.

LAD/FBD
i Select the count value data type from the drop-down list under the box
ciy | name.
Sini
- 1 (n i
=-H (')
Lind
"Conriat rame” Create your own "Counter name" that names the counter Data Block and
' CEID describes the purpose of this counter in your process.
Irit
- CO Q=
JLosp o
L
"Ciountes nams™
CTUD |
Sint
- ou -
<D ao 4
-F ov |
= LOAD [
W |
Parameter Data type Description
CU, CD BOOL Count up or count down, by one count
R (CTU, CTUD) BOOL Reset count value to zero
LOAD (CTD, CTUD) BOOL Load control for preset value
PV SINT, INT, DINT, USINT, Preset count value
UINT, UDINT
Q, QU BOOL True if CV >= PV
QD BOOL Trueif CV <=0
CcVv SINT, INT, DINT, USINT, Current count value
UINT, UDINT

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 95

Programming instructions

6.1 Basic instructions

96

The numerical range of count values depends on the data type you select. If the count value
is an unsigned integer type, you can count down to zero or count up to the range limit. If the
count value is a signed integer, you can count down to the negative integer limit and count
up to the positive integer limit.

CTU: CTU counts up by 1 when the value of parameter CU changes from 0 to 1. If the value
of parameter CV (Current count value) is greater than or equal to the value of parameter PV
(Preset count value), then the counter output parameter Q = 1.

If the value of the reset parameter R changes from 0 to 1, then the current count value is
reset to 0.

The following figure shows a CTU timing diagram with an unsigned integer count value
(where PV = 3).

co J LT _T1 TT1
L

R

CTD: CTD counts down by 1 when the value of parameter CD changes from 0 to 1. If the
value of parameter CV (Current count value) is equal to or less than 0, the counter output
parameter Q = 1.

If the value of parameter LOAD changes from 0 to 1, the value at parameter PV (Preset
value) is loaded to the counter as the new CV (Current count value).

The following figure shows a CTD timing diagram with an unsigned integer count value
(where PV = 3).

o — LIt ririt

— 12

Q
<
o
N
o

@« 1T 1
CTUD: CTUD counts up or down by 1 on the 0 to 1 transition of the Count up (CU) or Count
down (CD) inputs. If the value of parameter CV (Current count value) is equal to or greater
than the value of parameter PV (Preset value), then the counter output parameter QU = 1. If
the value of parameter CV is less than or equal to zero, then the counter output parameter
QD =1.

If the value of parameter LOAD changes from 0 to 1, then the value at parameter PV (Preset
value) is loaded to the counter as the new CV (Current count value). If the value of the reset
parameter R is changes from 0 to 1, the current count value is reset to 0.

The following figure shows a CTUD timing diagram with an unsigned integer count value
(where PV = 4).

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.1 Basic instructions

cu —JT L T 1L _T1 1 [

CD

i

LOAD

Ccv

6.1.3.1 CTRL_HSC instruction

The CTRL_HSC instruction controls the high-speed counters that are used to count events
that occur faster than the CPU scan rate. The counting rate of the CTU, CTD, and CTUD
counter instructions is limited by the CPU scan rate. The high-speed counters operate
asynchronously to the CPU scan and allow counting events up to a 100 kHz count rate (for
HSC 1, 2, or 3 and onboard CPU count input configuration). A typical use for high-speed
counters is to count pulses generated by a motion control shaft encoder.

Each CTRL_HSC instruction uses a structure stored in a data block to maintain data. You
assign the data block when the CTRL_HSC instruction is placed in the editor.

LAD/FBD
e —— Create you own "Counter name" that names the counter
CTRL_HSC Data Block and describes the purpose of this counter in
—JEN ENO — your process.
H5C BUSY 4
<DIR STATUS |
=
ey
< PERIOD
HEW DR
MEW_CV
HEW_RV
\NEWFERIOD
Parameter Parameter Data type Description
type
HSC IN HW_HSC HSC identifier
DIR IN BOOL 1 = Request new direction

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 97

Programming instructions

6.1 Basic instructions

Operation

98

Parameter Parameter Data type Description
type
Ccv IN BOOL 1 = Request to set new counter value
RV IN BOOL 1= Request to set new reference value
PERIOD IN BOOL 1 = Request to set new period value
(only for frequency measurement mode)
NEW_DIR IN INT New direction:
1= forward
-1= backward
NEW_CV IN DINT New counter value
NEW_RV IN DINT New reference value
NEW_PERIOD IN INT New period value in seconds: .01, .1, or 1
(only for frequency measurement mode)
BUSY ouT BOOL Function busy
STATUS ouT WORD Execution condition code

You must configure the high-speed counters in the project settings PLC device configuration
before you can use high-speed counters in your program. The HSC device configuration
settings select counting modes, 1/0 connections, interrupt assignment, and operation as a
high-speed counter or as a device to measure pulse frequency. You can operate the high-
speed counter with no program control or with program control.

Many high-speed counter configuration parameters are set only in the project device
configuration. Some high-speed counter parameters are initialized in the project device
configuration, but can be modified later under program control.

The CTRL_HSC instruction parameters provide program control of the counting process:
e Set the counting direction to a NEW_DIR value

e Set the current count value to a NEW_CV value

e Set the reference value to a NEW_RV value

® Set the Period value (for frequency measurement mode) to a NEW_PERIOD value

If the following boolean flag values are set to 1 when the CTRL_HSC instruction is executed,
the corresponding NEW_xxx value is loaded to the counter. Multiple requests (more than
one flag is set at the same time) are processed in a single execution of the CTRL_HSC
instruction.

® DIR =1 is arequest to load a NEW_DIR value, 0 = no change

e CV =1isarequesttoload a NEW_CV value, 0 = no change

e RV =1isarequesttoload a NEW_RYV value, 0 = no change

e PERIOD =1 is a request to load a NEW_PERIOD value, 0 = no change

The CTRL_HSC instruction is usually placed in a hardware interrupt OB that is executed
when the counter hardware interrupt event is triggered. For example, if a CV=RV event
triggers the counter interrupt, then a hardware interrupt OB code block executes the
CTRL_HSC instruction and can change the reference value by loading a NEW_RYV value.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.1 Basic instructions

The current count value is not available in the CTRL_HSC parameters. The Process Image

address that stores the current count value is assigned during the high-speed counter

hardware configuration. You may use program logic to directly read the count value and the

value returned to your program will be a correct count for the instant in which the counter

was read, but the counter will continue to count high-speed events. The actual count value

could change before your program completes a process using an old count value.

CTRL_HSC parameter details:

e |f an update of a parameter value is not requested, then the corresponding input values

are ignored.

® The DIR parameter is only valid if the counting direction is set by program control and not

by hardware input. You determine how to use this parameter in the HSC device

configuration.

® Fora S7-1200 HSC on the CPU or on the Signal Board, the BUSY parameter always has

a value of 0.

Condition codes

In the case of an error, ENO is set to 0, and the STATUS output contains a condition code.

(W#16#...)

STATUS value Description

0

No error

80A1

HSC identifier does not address a HSC

80B1

lllegal value in NEW_DIR

80B2

lllegal value in NEW_CV

80B3

lllegal value in NEW_RV

80B4

lllegal value in NEW_PERIOD

6.1.4 Compare

You use the compare instructions to compare two values of the same data type. When the
LAD contact comparison is TRUE, then the contact is activated. When the FBD box

comparison is TRUE, then the box output is TRUE.

Relation type

The comparison is true if:

IN1 is equal to IN2

<>

IN1 is not equal to IN2

IN1 is greater than or equal to IN2

IN1 is less than or equal to IN2

IN1 is greater than IN2

IN1 is less than IN2

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

99

Programming instructions

6.1 Basic instructions

LAD FBD
"IN N After you click on the instruction in the
== [| program editor, you can select the
Int :”f‘? : comparison type and data type from the
N2 L ! drop-down menus.

Parameter Data type Description

IN1, IN2 SINT, INT, DINT, USINT, UINT, UDINT, REAL, Values to compare

STRING, CHAR, TIME, DTL, Constant

In Range and Out of Range instructions

You use the IN_RANGE and OUT_RANGE instructions to test whether an input value is in or
out of a specified value range. If the comparison is TRUE, then the box output is TRUE.

Relation type The comparision is TRUE if:
IN_RANGE MIN <= VAL <= MAX
OUT_RANGE VAL < MIN or VAL > MAX

LAD FBD
IN_RANGE "|'ri';'#;'iﬁi:ii" After you click on the instruction in the program
m T editor, you can select the data type from the

-HIH r [yaL dropdown menus.

AL Laid -

{ M

| DUT_RANGE nm;?;"ﬂ

i [rg { MM
n r fuaL

{ MIH | e [

WAL -

{ M
Parameter Data type Description

MIN, VAL, MAX SINT, INT, DINT, USINT, UINT, UDINT, REAL, | Comparator inputs

Constant

The input parameters MIN, VAL, and MAX must be the same data type.

S7-1200 Programmable controller
100 System Manual, 04/2009, ASE02486680-01

Programming instructions
6.1 Basic instructions

OK and Not OK instructions

You use the OK and NOT_OK instructions to test whether an input data reference is a real
number or is not a real number. When the LAD contact is TRUE, the contact is activated and
passes power flow. When the FBD box is TRUE, then the box output is TRUE.

Instruction The REAL number test is TRUE if:
OK The input value is a REAL number
NOT_OK The input value is not a REAL number
LAD FBD
R -
IDK I | oK 1
g S'e
[NOT_DK |
—NOT_DOK}— - -
Parameter Data type Description
IN REAL Input data

6.1.5 Math

Add, subtract, multiply and divide instructions
You use a math box instruction to program the basic mathematical operations:
e ADD: Addition (IN1 + IN2 = OUT)
e SUB: Subtraction (IN1 - IN2 = OUT)
e MUL: Multiplication (IN1 * IN2 = OUT)
® DIV: Division (IN1/IN2 = OUT)

An Integer division operation truncates the fractional part of the quotient to produce an
integer output.

LAD FBD
------- 2501 —AbD Click below the box name and select a data
e m | type from the drop-down menu.
—EN END - —EN
{11 QuT 11M1 ouT |
{n2 _ {N2 END|-

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 101

Programming instructions

6.1 Basic instructions

Note
The basic math instruction parameters IN1, IN2, and OUT must be the same data type.

Parameter Data type Description

IN1, IN2 SINT, INT, DINT, USINT, UINT, UDINT, REAL, Math operation inputs
Constant

ouT SINT, INT, DINT, USINT, UINT, UDINT, REAL Math operation output

When enabled (EN = 1), the math instruction performs the specified operation on the input
values (IN1 and IN2) and stores the result in the memory address specified by the output
parameter (OUT). After the successful completion of the operation, the instruction sets ENO
=1.

Condition codes

ENO status | Description

1 No error

0 Result value is outside the valid number range of the data type selected
0 Division by 0 (IN2 = 0)
0

REAL: If one of the input values is NAN (not a number) or the result is INF (infinity),
NAN is returned.

0 ADD REAL: If both IN values are INF with different signs, this is an illegal operation
and NAN is returned.

0 SUB REAL: If both IN values are INF with the same sign, this is an illegal operation
and NAN is returned.

0 MUL REAL: If one IN value is zero and the other is INF, this is an illegal operation
and NAN is returned.

0 DIV REAL: If both IN values are zero or INF, this is an illegal operation and NAN is
returned.

6.1.5.1 MOD instruction

You use a MOD (modulo) instruction for the IN1 modulo IN2 math operation. The operation
IN1 MOD IN2 = IN1 - (IN1/IN2) * IN2 = parameter OUT.

LAD FBD
ST T Click below the box name and select a data
7 | 777 | type from the drop-down menu.
—EH END — —EN
1M1 our | IM1 ouT |
{2 | [Nz END -

S7-1200 Programmable controller
102 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.1 Basic instructions

Note
The IN1, IN2, and OUT parameters must be the same data type.

Parameter Data type Description
IN1 and IN2 | INT, INT, DINT, USINT, UINT, UDINT, Constant Modulo inputs
ouT INT, INT, DINT, USINT, UINT, UDINT Modulo output

Condition codes

ENO status | Description

1 No error

0 Value IN2 = 0 (division by zero), OUT is assigned the value zero

NEG instruction

You use the NEG (negation) instruction to invert the arithmetic sign of the value at parameter
IN and store the result in parameter OUT.

LAD FBD
Cwes | [WEG 1 Click below the box name and select a data
[|] type from the drop-down menu.

~{EN END = —EM OUT|
IH ouT 1] EHO =

Note

The IN and OUT parameters must be the same data type.

Parameter Data type Description
IN SINT, INT, DINT, REAL, Constant Math operation input
ouT SINT, INT, DINT, REAL Math operation output

Condition codes

ENO status | Description
1 No error
0 The resulting value is outside the valid number range of the selected data type.
Example for SINT: NEG (-128) results in +128 which exceeds the data type
maximum.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 103

Programming instructions

6.1 Basic instructions

Increment and Decrement instructions
You use the INC and DEC instructions to:
® Increment a signed or unsigned integer number value

e Decrement a signed or unsigned integer number value

LAD FBD
e i Click below the box name and select a data
w | | | type from the drop-down menu.
—EN EMD —EN [
{noUT | {IN/DUT END -
’T' """" D E|:|
™ m
—EN ENO — —EN
{IN/OUT | {IN/0UT END |-
Parameter Data type Description
IN/OUT SINT, INT, DINT, USINT, UINT, UDINT Math operation input and output

INC (increment): Parameter IN/OUT value +1 = parameter IN/OUT value
DEC (decrement): Parameter IN/OUT value - 1 = parameter IN/OUT value

Condition codes

ENO status | Description
1 No error
0 The resulting value is outside the valid number range of the selected data type.
Example for SINT: INC (127) results in -128 which exceeds the data type
maximum.

Absolute Value instruction

You use the ABS instruction to get the absolute value of a signed integer or real number at
parameter IN and store the result in parameter OUT.

LAD FBD
EE AES Click below the box name and select a data
m | ™ type from the drop-down menu.
—EN END- —EN OUT|
{IN ouT | {IN_ EnO-

S7-1200 Programmable controller
104 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.1 Basic instructions

Note

The IN and OUT parameters must be the same data type.

Parameter

Data type

Description

IN

SINT, INT, DINT, REAL

Math operation input

ouT

SINT, INT, DINT, REAL

Math operation output

Condition codes

ENO status | Description
1 No error
0 The result value is outside the valid number range of the selected data type.
Example for SINT: ABS (-128) results in +128 which exceeds the data type maximum.

MIN and MAX instructions

You use the MIN (minimum) and MAX (maximum) instructions as follows:

® MIN compares the value of two parameters IN1 and IN2 and assigns the minimum
(lesser) value to parameter OUT.

o MAX compares the value of two parameters IN1 and IN2 and assigns the maximum

(greater) value to parameter OUT.

LAD

[MmN
m
—~EN ENO®-
1IN ouT i
{in2

A
ELL

—EH EMO =
{IN1 ouT

FBD

MIN

—EN ;
i ouT |
N2 END

Click below the box name and select a data
type from the drop-down menu.

Note

The IN1, IN2, and OUT parameters must be the same data type.

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

105

Programming instructions

6.1 Basic instructions

Parameter Data type Description

IN1, IN2 SINT, INT, DINT, USINT, UINT, UDINT, REAL, | Math operation inputs
Constant

ouT SINT, INT, DINT, USINT, UINT, UDINT, REAL | Math operation output

Condition codes

ENO status | Description

1 No error

0 For REAL data type only:

e One or both inputs is not a REAL number (NAN).
e The resulting OUT is +/- infinity (INF).

Limit instruction

You use the Limit instruction to test if the value of parameter IN is inside the value range
specified by parameters MIN and MAX. The OUT value is clamped at the MIN or MAX value,
if the IN value is outside this range.

e |[f the value of parameter IN is inside specified range, then the value of IN is stored in
parameter OUT.

e |f the value of parameter IN is outside of the specified range, then the OUT value is the
value of parameter MIN (if the IN value is less than the MIN value) or the value of
parameter MAX (if the IN value is greater than the MAX value).

LAD FBD
T T Click below the box name and select a data
| ™ type from the drop-down menu.
- EM END = =-EN
MM OUT | il
M 1IN ouTt |
{Max . {MAX EMD -
Note

The MIN, IN, MAX, and OUT parameters must be the same data type.

Parameter Data type Description

MIN, IN, and MAX | SINT, INT, DINT, USINT, UINT, UDINT, REAL, Math operation inputs
Constant

ouT SINT, INT, DINT, USINT, UINT, UDINT, REAL Math operation output

S7-1200 Programmable controller
106 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.1 Basic instructions

Condition codes

ENO status Description
1 No error
0 REAL: If one or more of the values for MIN, IN and MAX is not a number (NAN),
then NAN is returned.
0 If MIN is greater than MAX, the value IN is assigned to OUT.

Floating-point math instructions

You use the floating point instructions to program mathematical operations using the REAL
data type:

SQR: Square (IN 2= OUT)

SQRT: Square root (vVIN = OUT)

LN: Natural logarithm (LN(IN) = OUT)

EXP: Natural exponential (e 'N=0UT), where base e = 2.71828182845904523536
SIN: Sine (sin(IN radians) = OUT)

COS: Cosine (cos(IN radians) = OUT)

TAN: Tangent (tan(IN radians) = OUT)

ASIN: Inverse sine (arcsine(IN) = OUT radians), where the sin(OUT radians) = IN
ACOS: Inverse cosine (arccos(IN) = OUT radians), where the cos(OUT radians) = IN
ATAN: Inverse tangent (arctan(IN) = OUT radians), where the tan(OUT radians) = IN
FRAC: Fraction (fractional part of floating point number IN = OUT)

EXPT: General exponential (IN1 N2= QUT)

LAD FBD
—soi | —san | Click below the box name and select a data
Aeal | Aeal | type from the drop-down menu. EXPT
'-E;" E’I‘_‘I'i- —1EN E’”'JI;' parameters IN1 and OUT are always Real.
L ! L B You can select the data type for the
exponent parameter IN2.
EXPT | [TExPT
Real = 777 | Reat =777
= EN END = —{EN
{INt OuT| (M1 out|
{IN2 | {IN2 END -
Parameter Data type Description
IN, IN1 REAL, Constant Inputs
IN2 SINT, INT, DINT, USINT, UINT,UDINT, EXPT exponent input
REAL, Constant
ouT REAL Outputs

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 107

Programming instructions

6.1 Basic instructions

Condition codes

ENO |Instruction | Condition Result (OUT)
status
1 All No error Valid result
0 SQR Result exceeds valid REAL range +INF
IN is +/- NAN (not a number) +NAN
SQRT IN is negative -NAN
IN is +/- INF (infinity) or +/- NAN +/- INF or +/- NAN
LN IN is 0.0, negative, -INF, or -NAN -NAN
IN is +INF or +NAN +INF or +NAN
EXP Result exceeds valid REAL range +INF
IN is +/- NAN +/- NAN
SIN, COS, |INis +/- INF or +/- NAN +/- INF or +/- NAN
TAN
ASIN, IN is outside valid range of -1.0 to +1.0 +NAN
ACOS IN is +/- NAN +/- NAN
ATAN IN is +/- NAN +/- NAN
FRAC IN is +/- INF or +/- NAN +NAN
EXPT IN1 is +INF and IN2 is not -INF +INF
IN1 is negative or -INF +NAN if IN2 is REAL, -INF
otherwise
IN1 or IN2 is +/- NAN +NAN
IN1 is 0.0 and IN2 is REAL (only) +NAN

6.1.6 Move

Move and Block Move instructions

You use the move instructions to copy data elements to a new memory address and convert
from one data type to another. The source data is not changed by the move process.

e MOVE: Copies a data element stored at a specified address to a new address

e MOVE_BLK: Interruptible move that copies a block of data elements to a new address

¢ UMOVE_BLK: Uninterruptible move that copies a block of data elements to a new

address

108

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.1 Basic instructions

Note

Rules for data copy operations
e To copy the BOOL data type, use SET_BF, RESET_BF, R, S, or output coil (LAD)
e To copy a single elementary data type, use MOVE
e To copy an array of an elementary data type, use MOVE_BLK or UMOVE_BLK
e To copy a structure, use MOVE

e To copy a string, use S_CONV

e To copy a single character in a string, use MOVE

e The MOVE_BLK and UMOVE_BLK instructions cannot be used to copy arrays or
structures to the I, Q, or M memory areas.

LAD FBD

""" MOVE T MOVE |
—EM EMO = —EN OUT1|

M ouT1 {IN ENO -

[MOVE_BLE | MOVE_BLK
—EN ENO| —EN

{IN ouT {IN OuT}

{couNT 1L

[UMOVE_BLE [UMOVE_BLE |
—EH END — —=EN

N ouT § 1IN ouT |

{COUNT {COUNT END

MOVE

Parameter Data type Description
IN SINT, INT, DINT, USINT, UINT, UDINT, REAL, Source address

BYTE, WORD, DWORD, CHAR, ARRAY,
STRUCT, DTL, TIME

ouT SINT, INT, DINT, USINT, UINT, UDINT, REAL,
BYTE, WORD, DWORD, CHAR, ARRAY,
STRUCT, DTL, TIME

Destination address

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

109

Programming instructions

6.1 Basic instructions

MOVE_BLK, UMOVE_BLK
Parameter Data type Description
IN SINT, INT, DINT, USINT, UINT, UDINT, REAL, Source start address
BYTE, WORD, DWORD
COUNT UINT Number of data elements to copy
ouT SINT, INT, DINT, USINT, UINT, UDINT, REAL, Destination start address
BYTE, WORD, DWORD

The MOVE instruction copies a single data element from the source address specified by the
IN parameter to the destination address specified by the OUT parameter.

The MOVE_BLK and UMOVE_BLK instructions have an additional COUNT parameter. The
COUNT specifies how many data elements are copied. The number of bytes per element
copied depends on the data type assigned to the IN and OUT parameter tag names in the
PLC tag table.

MOVE_BLK and UMOVE_BLK instructions differ in how interrupts are handled:

® Interrupt events are queued and processed during MOVE_BLK execution. Use the
MOVE_BLK instruction when the data at the move destination address is not used within
an interrupt OB subprogram or, if used, the destination data does not have to be
consistent. If a MOVE_BLK operation is interrupted, then the last data element moved is
complete and consistent at the destination address. The MOVE_BLK operation is
resumed after the interrupt execution is complete.

® Interrupt events are queued but not processed until UMOVE_BLK execution is complete.
Use the UMOVE_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram.

Condition codes

ENO is always true following execution of the MOVE instruction.

ENO status Condition Result
1 No error All COUNT elements were
successfully copied
0 Either the source (IN) range or the Elements that fit are copied. No
destination (OUT) range exceeds the partial elements are copied.

available memory area

S7-1200 Programmable controller
110 System Manual, 04/2009, ASE02486680-01

Programming instructions

Fill instructions

6.1 Basic instructions

You use the FILL_BLK and UFILL_BLK instructions as follows:

e FILL_BLK: The interruptible fill instruction fills an address range with copies of a specified
data element.

e UFILL_BLK: The uninterruptible fill instruction fills an address range with copies of a
specified data element.

Note
Rules for

data fill operations

o To fill with the BOOL data type, use SET_BF, RESET_BF, R, S, or output coil (LAD)

¢ To fill with a single elementary data type, use MOVE

e To fill an array with an elementary data type, use FILL_BLK or UFILL_BLK
e To fill a single character in a string, use MOVE

e The FILL_BLK and UFILL_BLK instructions cannot be used to fill arrays in the I, Q, or
M memory areas.

LAD FBD
["FILL_BLE | TFILL_BLE |
—EM EHO - —EH
1] ouT | {IN auT |
COUMT | COUNT ENO =
[uALL B | [UALLBLK |
—EN ENO|= —EH ;
n our kel LU
COLUNT {COUNT ENO
Parameter | Data type Description
IN SINT, INT, DINT, USINT, UINT, UDINT, REAL, Data source address
BYTE, WORD, DWORD
COUNT USINT, UINT Number of data elements to copy
ouT SINT, INT, DINT, USINT, UINT, UDINT, REAL, Data destination address
BYTE, WORD, DWORD

The FILL_BLK and UFILL_BLK instructions copy the source data element IN to the
destination where the initial address is specified by the parameter OUT. The copy process
repeats and a block of adjacent addresses is filled until the number of copies is equal to the
COUNT parameter.

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

111

Programming instructions

6.1 Basic instructions

FILL_BLK and UFILL_BLK instructions differ in how interrupts are handled:

® |Interrupt events are queued and processed during FILL_BLK execution. Use the
FILL_BLK instruction when the data at the move destination address is not used within an
interrupt OB subprogram or, if used, the destination data does not have to be consistent.

® [nterrupt events are queued but not processed until UFILL_BLK execution is complete.
Use the UFILL_BLK instruction when the move operation must be completed and the
destination data consistent, before the execution of an interrupt OB subprogram.

Condition codes

ENO status | Condition Result
1 No error The IN element was successfully copied
to all COUNT destinations
0 The destination (OUT) range exceeds the | Elements that fit are copied. No partial
available memory area elements are copied.

6.1.6.1 Swap instruction

You use the SWAP instruction to reverse the byte order for two-byte and four-byte data
elements. No change is made to the bit order within each byte. ENO is always TRUE
following execution of the SWAP instruction.

LAD FBD

TP T SWaP Click below the box name and select a data
7 m type from the drop menu.
=EHN END = —EM ouT |
I ouT | {m EwDl-

Parameter Data type Description

IN WORD, DWORD Ordered data bytes IN

ouT WORD, DWORD Reverse ordered data bytes OUT

Example: Parameter IN = MBO Example: Parameter OUT = MB4,
Pre SWAP execution Post SWAP execution

Address MBO MB1 MB4 MB5

W#16#1234 12 34 34 12

WORD MSB LSB MSB LSB

Address MBO MB1 MB2 MB3 MB4 MB5 MB6 MB7

DW#16# 12 34 56 78 78 56 34 12

12345678

DWORD MSB LSB MSB LSB

S7-1200 Programmable controller
112 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.1 Basic instructions

6.1.7 Convert

Convert instruction

You use the CONVERT instruction to convert a data element from one data type to another
data type. Click below the box name and then select IN and OUT data types from the
dropdown list. After you select the (convert from) data type, a list of possible conversions is
shown in the (convert to) dropdown list. Conversions from and to BCD16 are restricted to the
INT data type. Conversions from and to BCD32 are restricted to the DINT data type.

LAD FBD
T T Click below the box name and select data
77 10 777 T 1y 777 types from the drop-down menus.
~EM EMO = —~EN OUT|
LB N ENO-

Parameter | Data type Description

IN SINT, INT, DINT, USINT, UINT, UDINT, BYTE, IN value
WORD, DWORD, REAL, BCD16, BCD32

ouT SINT, INT, DINT, USINT, UINT, UDINT, BYTE, IN value converted to a new data
WORD, DWORD, REAL, BCD16, BCD32 type

Condition codes

ENO status Description Result OUT

1 No error Valid result

0 IN is +/- INF or +/- NAN +/- INF or +/- NAN

0 Result exceeds valid range for OUT data OUT is set to the least-significant
type bytes of IN

Round and Truncate instructions

e ROUND converts a real number to an integer. The real number fraction is rounded to the
nearest integer value (IEEE - round to nearest).

® TRUNC converts a real number to an integer. The fractional part of the real number is
truncated to zero (IEEE - round to zero).

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 113

Programming instructions

6.1 Basic instructions

LAD FBD
ROUMD ROUND
ResltaDind | |memu |
—|EN END- —{EN ouT|
L oL} [N ENOR
[TRUNC | TRUNC
| FealtoDint | Fieal to Dint
—{EN ENO = — EM ouT |
{IN our | {IN END -
Parameter Data type Description
IN REAL Floating point input
ouT SINT, INT, DINT, USINT, UINT, UDINT, REAL Rounded or truncated output

Condition codes

ENO status | Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NAN +/- INF or +/- NAN

Ceiling and Floor instructions

® CEIL converts a real number to the smallest integer greater than or equal to that real
number (IEEE - round to +infinity).

® FLOOR converts a real number to the greatest integer smaller than or equal to that real
number (IEEE - round to -infinity).

LAD FBD
CEIL CEIL
Aeal 1o Dint Fieal to Dint
—EN EWD- —EN OUT|
{IN ouT | {IN END =
FLOOR FLODR |
Real to Dint Fleal to Dint
—EN END = ~EN OUT|
L ouT | {IM ENOD ~
Parameter Data type Description
IN REAL Floating point input
ouT SINT, INT, DINT, USINT, UINT, UDINT, REAL Converted output

114

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

Condition codes

6.1 Basic instructions

ENO status Description Result OUT
1 No error Valid result
0 IN is +/- INF or +/- NAN +/- INF or +/- NAN

6.1.7.1

Scale and normalize instructions

Scale and normalize instructions

® SCALE_X scales the normalized real parameter VALUE where (0.0 <= VALUE <=1.0)
in the data type and value range specified by the MIN and MAX parameters

OUT = VALUE (MAX - MIN) + MIN

o NORM_X normalizes the parameter VALUE inside the value range specified by the MIN
and MAX parameters

OUT = (VALUE - MIN) / (MAX - MIN), where (0.0 <= OUT <= 1.0)

LAD FBD
TSCALE R | TSCALEX | Click below the box name and select a data
Raal 1o 777 Real to 777 type from the drop-down menu.
~EH ENO = —EM
| MIN ouT | {MIM
{\ALLIE IWALUE OUT |
{Max {ME END —
" NDRM_X TNORM_X | For SCALE_X, parameters MIN, MAX, and
777 bo Real ¥ 1o Resl OUT must be the same data type.
Tare oot T For NORM_X, parameters MIN, VALUE, and
{\VALUE {MIN MAX must be the same data type.
| Mt \WALLE OUT |
{M&X ENO |-
Parameter Data type Description
MIN SINT, INT, DINT, USINT, UINT, UDINT, REAL Input minimum value for range
VALUE SCALE_X: REAL Input value to scale or normalize
NORM_X: SINT, INT, DINT, USINT, UINT,
UDINT, REAL
MAX SINT, INT, DINT, USINT, UINT, UDINT, REAL Input maximum value for range
ouT SCALE_X: SINT, INT, DINT, USINT, UINT, Scaled or Normalized output
UDINT, REAL value
NORM_X: REAL

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

115

Programming instructions

6.1 Basic instructions

6.1.8

Note

SCALE_X parameter VALUE should be restricted to (0.0 <= VALUE <=1.0)

If parameter VALUE is less than 0.0 or greater than 1.0:

e The linear scaling operation can produce OUT values that are less than the parameter
MIN value or above the parameter MAX value for OUT values that fit within the value
range of the OUT data type. SCALE_X execution sets ENO = TRUE for these cases.

e ltis possible to generate scaled numbers that are not within the range of the OUT data
type. For these cases, the parameter OUT value is set to an intermediate value equal to
the least-significant portion of the scaled real number prior to final conversion to the OUT
data type. SCALE_X execution sets ENO = FALSE in this case.

NORM_X parameter VALUE should be restricted to (MIN <= VALUE <= MAX)

If parameter VALUE is less than MIN or greater than MAX, the linear scaling operation can
produce normalized OUT values that are less than 0.0 or greater than 1.0. NORM_X

execution sets ENO = TRUE in this case.

Condition codes

ENO status | Condition Result OUT
1 No error Valid result
0 Result exceeds valid range for the | Intermediate result: The least-significant portion
OUT data type of a real number prior to final conversion to the
OUT data type.
0 Parameters MAX <= MIN SCALE_X: The least-significant portion of the
real number VALUE to fill up the OUT size.
NORM_X: VALUE in VALUE data type
extended to fill a double word size.
0 Parameter VALUE = +/- INF or +/- | VALUE is written to OUT
NAN

Program control

Jump and label instructions
You use program control instructions for conditional control of the execution sequence:

e JMP: If there is power flow to a JMP coil (LAD), or if the JMP box input is true (FBD), then
program execution continues with the first instruction following the specified label.

o JMPN: If there is no power flow to a JMP coil (LAD), or if the JMP box input is false
(FBD), then program execution continues with the first instruction following the specified

116

label.

® [abel: Destination label for a JMP or JMPN jump instruction.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions
6.1 Basic instructions

LAD FBD

Lisbl_name Labwel_rame
—{JMP}— JuP

Latsl_name Labe|_ruastie
—{JHFN} JMPH

—
Label_name Label_name
Parameter Data type Description
Label_name Label identifier Identifier for Jump instructions and the corresponding
jump destination program label

You create your label names by typing in the LABEL instruction directly. The available label
names for the JMP and JMPN label name field can be selected using the parameter helper
icon. You can also type a label name directly into the JMP or JMPN instruction.

Return_Value (RET) execution control instruction

You use the RET instruction to terminate the execution of the current block.

LAD FBD
"Reebur_Value™ "Retum_Valse"
——{RET}— RET
Parameter Data type Description
Return_Value BOOL The "Return_value" parameter of the RET instruction is assigned to
the ENO output of the block call box in the calling block.

The optional RET instruction is used to terminate the execution of the current block. If and
only if there is power flow to the RET coil (LAD) or if the RET box input is true (FBD), then
program execution of the current block will end at that point and instructions beyond the RET
instruction will not be executed. If the current block is an OB, the "Return_Value" parameter
is ignored. If the current block is a FC or FB, the value of the "Return_Value " parameter is
passed back to the calling routine as the ENO value of the calling box.

You are not required to use a RET instruction as the last instruction in a block; this is done
automatically for you. You can have multiple RET instructions within a single block.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 117

Programming instructions

6.1 Basic instructions

Sample steps for using the RET instruction inside an FC code block:
1. Create a new project and add an FC:
2. Edit the FC:

— Add instructions from the instruction tree.

— Add a RET instruction, including one of the following for the "Return_Value"
parameter:

TRUE, FALSE, or a memory location that specifies the required return value.
— Add more instructions.
3. Call the FC from MAIN [OB1].

The EN input on the FC box in the MAIN code block must be true to begin execution of the
FC.

The value specified by the RET instruction in the FC will be present on the ENO output of the
FC box in the MAIN code block following execution of the FC for which power flow to the
RET instruction is true.

6.1.9 Logical operations

AND, OR, and XOR instructions
® AND: Logical AND for BYTE, WORD, and DWORD data types
® OR: Logical OR for BYTE, WORD, and DWORD data types
® XOR: Logical exclusive OR for BYTE, WORD, and DWORD data types

LAD FBD
- T Click below the box name and select a data
Wword Waid type from the drop menu.
—EH EMNO = —EM
M1 our 1IN ouT |
{PH | {IN2 END =
Parameter Data type Description
IN1, IN2 BYTE, WORD, DWORD Logical inputs
ouT BYTE, WORD, DWORD Logical output

The data type selection sets parameters IN1, IN2, and OUT to the same data type. The
corresponding bit values of IN1 and IN2 are combined to produce a binary logic result, at
parameter OUT. ENO is always TRUE following the execution of these instructions.

S7-1200 Programmable controller
118 System Manual, 04/2009, ASE02486680-01

Programming instructions

Invert instruction

6.1 Basic instructions

You use the INV instruction to get the binary one's complement of the parameter IN. The
one's complement is formed by inverting each bit value of the IN parameter (changing each
0 to 1 and each 1 to 0). ENO is always TRUE following the execution of this instruction.

LAD FBD
v T Click below the box name and select a data
w | 7 type from the drop-down menu.
—EN EMND = - EN ouT |
{1 ouT | (It END =
Parameter Data type Description
IN SINT, INT, DINT, USINT, UINT, UDINT, BYTE, Data element to invert
WORD, DWORD
ouT SINT, INT, DINT, USINT, UINT, UDINT, BYTE, Inverted output
WORD, DWORD

Encode and decode instructions

® ENCO encodes a bit pattern to a binary number

e DECO decodes a binary number to a bit pattern

LAD FBD
e ERGD Click below the box name and select a data
7 7 type from the drop-down menu.
—EM EHO ~JEN ouT
1IN ouT 1M ENO =
e | —_—
[T |
—EN END - —EN OUuT
{In ouT {IN END -
Parameter Data type Description
IN ENCO: BYTE, WORD, DWORD ENCO: Bit pattern to encode
DECO: UINT DECO: Value to decode
ouT ENCO: INT ENCO: Encoded value
DECO: BYTE, WORD, DWORD DECO: Decoded bit pattern

The ENCO instruction converts parameter IN to the binary number corresponding to the bit
position of the least-significant set bit of parameter IN and returns the result to parameter
OUT. If parameter IN is either 0000 0001 or 0000 0000, then a value of 0 is returned to OUT.
If the parameter IN value is 0000 0000, then ENO is set to FALSE.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

119

Programming instructions

6.1 Basic instructions

The DECO instruction decodes a binary number from parameter IN, by setting the
corresponding bit position in parameter OUT to a 1 (all other bits are set to 0). ENO is
always TRUE following execution of the DECO instruction.

The DECO parameter OUT data type selection of a BYTE, WORD, or DWORD restricts the
useful range of parameter IN. If the value of parameter IN exceeds the useful range, then a
modulo operation is performed to extract the least significant bits shown below.

DECO parameter IN range:

® 3 bits (values 0-7) IN are used to set 1 bit position in a byte OUT

® 4-bits (values 0-15) IN are used to set 1 bit position in a word OUT

® 5 bits (values 0-31) IN are used to set 1 bit position in a double word OUT

DECO IN value DECO OUT value (Decode single bit position)
BYTE OUT (8 bits):

Min. IN 00000001

Max. IN 10000000
WORD OUT (16 bits):

Min. IN 0 0000000000000001

Max. IN 15 1000000000000000
DWORD OUT: (32 bits):

Min. IN 0 00000000000000000000000000000001

Max. IN 31 10000000000000000000000000000000

Condition codes for ENCO

ENO status Condition Result (OUT)
1 No error Valid bit number
0 IN is zero OUT is set to zero

Select (SEL) and Multiplex (MUX) instructions

e SEL assigns one of two input values to parameter OUT, depending on the parameter G

120

value.

e MUX assigns one of many input values to parameter OUT, depending on the parameter
K value. If the parameter K value exceeds the valid range, the parameter ELSE value is
assigned to parameter OUT.

S7-1200 Programmable controller

System Manual, 04/2009, A5E02486680-01

Programming instructions

6.1 Basic instructions

LAD FBD
—EEL | SEL Click below the box name and select a data
wroo| [=2 | type from the drop-down menu.
—{EN EMO = —{EN
=3 auT =
(1111 1IN0 ouT |
N1 | (N1 END-
[M [Mux |
il [|
—EM END = —EN
1K auT § K
{BND IO
N1 {IM1 ouT |
{ELSE {ELSE ENO |-

Parameters for SEL

Parameter Data type Description
G BOOL Selector switch:
e FALSE for INO
e TRUE for IN1
INO, IN1 SINT, INT, DINT, USINT, UINT, UDINT, REAL, BYTE, Inputs
WORD, DWORD, TIME, CHAR
ouT SINT, INT, DINT, USINT, UINT, UDINT, REAL, BYTE, Output
WORD, DWORD, TIME, CHAR
Parameters for MUX
Parameter Data type Description
K UINT Selector value:
e 0OforINO
e 1 forIN1
[]
INO, IN1, | SINT, INT, DINT, USINT, UINT, UDINT, REAL, BYTE, Inputs
WORD, DWORD, TIME, CHAR
ELSE SINT, INT, DINT, USINT, UINT, UDINT, REAL, BYTE, Input substitute value
WORD, DWORD, TIME, CHAR (optional)
ouT SINT, INT, DINT, USINT, UINT, UDINT, REAL, BYTE, Output
WORD, DWORD, TIME, CHAR

Input variables and the output variable must be of the same data type.

® The SEL instruction always selects between two IN values.

® The MUX instruction has two IN parameters when first placed in the program editor, but it
can be expanded to add more IN parameters.

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

121

Programming instructions

6.1 Basic instructions

Use the following methods to add and remove input parameters for the MUX instruction:

e To add an input, right-click on an input stub for one of the existing IN parameters and
select the "Insert input" command.

e Toremove an input, right-click on an input stub for one of the existing IN parameters
(when there are more than the original two inputs) and select the "Delete" command.

Condition codes

ENO is always TRUE following execution of the SEL instruction.

ENO status (MUX) | MUX condition MUX result OUT
1 No error Selected IN value is assigned to OUT
0 K is greater than or equal to the | No ELSE provided:
number of IN parameters OUT is unchanged
ELSE provided:
ELSE value assigned to OUT

6.1.10 Shift and Rotate

Shift instruction

You use the shift instructions to shift the bit pattern of parameter IN. The result is assigned to
parameter OUT. Parameter N specifies the number of bit positions shifted:

e SHR: Shift bit pattern right.
e SHL: Shift bit pattern left.

LAD FBD
shR | T Click below the box name and select a data
m | i type from the drop-down list.

~EN END - —EH

{IM ouT | IN - ouT|

N | M END

Parameter Data type Description

IN BYTE, WORD, DWORD Bit pattern to shift

N UINT Number of bit positions to shift

ouT BYTE, WORD, DWORD Bit pattern after shift operation

® For N=0, no shift occurs and the IN value is assigned to OUT.

e Zeros are shifted into the bit positions emptied by the shift operation.

S7-1200 Programmable controller
122 System Manual, 04/2009, ASE02486680-01

Programming instructions
6.1 Basic instructions

e [f the number of positions to shift (N) exceeds the number of bits in the target value (8 for
BYTE, 16 for WORD, 32 for DWORD), then all original bit values will be shifted out and
replaced with zeros (zero is assigned to OUT).

® ENO is always TRUE for the shift operations.

SHL example for WORD size data: Shift in zeros from the left

IN | 11100010 1010 1101 OUT value before first shift: 1110 0010 1010 1101
After first shift left: 1100 0101 0101 1010
After second shift left: 1000 1010 1011 0100
After third shift left: 0001 0101 0110 1000

Rotate instruction

You use the rotate instructions to rotate the bit pattern of parameter IN. The result is
assigned to parameter OUT. Parameter N defines the number of bit positions rotated.

® ROR: Rotate bit pattern right
® ROL: Rotate bit pattern left

LAD FBD
------- oL | " ROR | Click below the box name and select a data
i wm type from the drop-down menu.

-EN EMD - ~EN

/M ouT | L ouT

M iN END =
Parameter Data type Description

IN BYTE, WORD, DWORD Bit pattern to rotate
N UINT Number of bit positions to rotate
ouT BYTE, WORD, DWORD Bit pattern after rotate operation

e For N=0, no rotate occurs and the IN value is assigned to OUT.

e Bit data rotated out one side of the target value is rotated into the other side of the target
value, so no original bit values are lost.

e |f the number of bit positions to rotate (N) exceeds the number of bits in the target value
(8 for BYTE, 16 for WORD, 32 for DWORD), then the rotation is still performed.

® ENO is always TRUE following execution of the rotate instructions.

ROR example for WORD size data: Rotate bits out the right -side into the left -side

IN | 0100 0000 0000 0001 OUT value before first rotate: 0100 0000 0000 0001
After first rotate right: 1010 0000 0000 0000
After second rotate right: 0101 0000 0000 0000

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 123

Programming instructions

6.2 Extended instructions

6.2 Extended instructions

6.2.1

Date and Time instructions

Clock and calendar instructions

You use the date and time instructions to program calendar and time calculations.

e T_CONV converts the data type of a time value: (TIME to DINT) or (DINT to TIME)

e T_ADD adds TIME and DTL values: (TIME + TIME = TIME) or (DTL + TIME = DTL)

e T_SUB subtracts TIME and DTL values: (TIME - TIME = TIME) or (DTL - TIME = DTL)
e T_DIFF provides the difference between two DTL values as a TIME value: DTL - DTL =

TIME
Data type Size (bits) Valid ranges
TIME 32 T#-24d_20h_31m_23s_648ms to
T#24d_20h_31m_23s_647ms
Stored as -2,147,483,648 ms to +2,147,483,647 ms
DTL data structure
Year: UINT 16 1970 to 2554
Month: USINT 8 1to 12
Day: USINT 8 1to 31
Weekday: USINT 8 1=Sunday to 7=Saturday
Hour: USINT 8 0to 23
Minute: USINT 8 0to 59
Second: USINT 8 0to 59
Nanoseconds: UDINT 32 0 to 999,999,999
LAD FBD
A BTG Select the IN and OUT data types from the
77 b0 7T TR drop-down lists available below the
. E:“ ESE r . fn" EE:E i instruction name.
Parameter Parameter Data type Description
type
IN IN DINT, TIME Input TIME value or DINT value
ouT ouT DINT, TIME Converted DINT value or TIME value

T_CONYV (Time Convert) converts a TIME data type to a DINT data type, or the reverse
conversion from DINT data type to TIME data type.

124

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

LAD FBD
T ADD ’LAT Select ’Fhe IN1 data typg from t!’\e drop-down
777 1o Tiene 777 1 Time list available below the instruction name.

= LRI EN{) —|EN The IN1 data type selection also sets the

[1m ouT | Il OUT)

lin2 2 ENO - data type of parameter OUT.
Parameter Parameter Data type Description

type

IN1 IN DTL, TIME DTL or TIME value
IN2 IN TIME TIME value to add
ouT ouT DTL, TIME DTL or TIME sum

T_ADD (Time Add) adds the input IN1 value (DTL or TIME data types) with the input IN2
TIME value. Parameter OUT provides the DTL or TIME value result. Two data type

operations are possible, as shown below:

e TIME + TIME = TIME
e DTL + TIME = DTL

LAD FBD
T sus | “TsuB | Select t.he IN1 data typg from the drop-down
777 to Time | 777 10 Tioes | list available below the instruction name.
~[ERE Lk ={aH The IN1 data type selection also sets the
I out Hm out
lin2 k2 ENO- data type of parameter OUT.
Parameter Parameter Data type Description
type
IN1 IN DTL, TIME DTL or TIME value
IN2 IN TIME TIME value to subtract
ouT ouT DTL, TIME DTL or TIME difference

T_SUB (Time Subtract) subtracts the IN2 TIME value from IN1 (DTL or Time value).
Parameter OUT provides the difference value as a DTL or TIME data type. Two data type
operations are possible:

e TIME - TIME = TIME
e DTL-TIME =DTL

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

125

Programming instructions

6.2 Extended instructions

LAD FBD
T_DIFF | [T_DiFF
DTL to Time | | DL bo Time
-EN END |- —{EN
{ini ouT | 1 Out|
{in2 | LU
Parameter Parameter Data type Description
type
IN1 IN DTL DTL value
IN2 IN DTL DTL value to subtract
ouT ouT TIME TIME difference

T_DIFF (Time Difference) subtracts the IN2 DTL value from IN1 DTL value. Parameter OUT
provides the difference value as a TIME data type.

e DTL-DTL = TIME.
Condition codes

ENO = 1 means no error occurred.
ENO = 0 and parameter OUT = 0 errors:
e |Invalid DTL value

e |nvalid TIME value

Clock instructions

You use the clock instructions to set and read the PLC system clock. The data type DTL is
used to provide date and time values.

DTL structure Size Valid ranges

Year: UINT 16 bits 1970 to 2554

Month: USINT 8 bits 1t012

Day: USINT 8 bits 1to 31

Weekday: USINT 8 bits 1=Sunday to 7=Saturday
Hour: USINT 8 bits 0to 23

Minute: USINT 8 bits 0to 59

Second: USINT 8 bits 0to 59

Nanoseconds: UDINT 32 bits 0 to 999,999,999

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

LAD FBD
WRSYST | WH_STS T |
DTL DTL
= EM EN = —EN ERA;
14 ERR | iIN END -

Parameter Parameter Data type Description

type
IN IN DTL Time of day to set in the PLC system clock
RET_VAL ouT INT Execution condition code

WR_SYS_T (Write System Time) sets the PLC time of day clock with a DTL value at
parameter IN. This time value does not include local time zone or daylight saving time

offsets.
LAD FBD
RD_SYS_T RO_SYS_T
DTL DTL
-EM EMO - ERR
ERR | ouT
ouT | -|_EH) EMD r
Parameter Parameter Data type Description
type
RET_VAL ouT INT Execution condition code
ouT ouT DTL Current PLC system time

RD_SYS_T (Read System Time) reads the current system time from the PLC. This time
value does not include local time zone or daylight saving time offsets.

LAD FBD
AD_LOC_T RD_LOC_T
oTL DTL

=EN EHD ERB

ERR out

ouT —EN END-
Parameter Parameter Data type Description

type

RET_VAL ouT INT Execution condition code
ouT ouT DTL Local time

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 127

Programming instructions

6.2 Extended instructions

RD_LOC_T (Read Local Time) provides the current local time of the PLC as a DTL data

type.

® The local time is calculated by using the time zone and daylight saving time offsets that
you set in the CPU Clock device configuration.

® Time zone configuration is an offset to Coordinated Universal Time (UTC) system time.

e Daylight saving time configuration specifies the month, week, day, and hour when
daylight saving time begins.

e Standard time configuration also specifies the month, week, day, and hour when standard

time begins.

® The time zone offset is always applied to the system time value. The daylight saving time

offset is only applied when daylight saving time is in effect.

Condition codes

ENO = 1 means no error occurred. ENO = 0 means an execution error occurred, and a

condition code is provided at the RET_VAL output.

RET_VAL (W#16#....) | Description

0000 No error

8080 Local time not available

8081 lllegal year value

8082 lllegal month value

8083 lllegal day value

8084 lllegal hour value

8085 lllegal minute value

8086 lllegal second value

8087 lllegal nanosecond value

80B0 The real-time clock has failed
6.2.2 String and character instructions

6.2.21 String conversion instructions

String to value and value to string conversions

You can convert number character strings to number values or number values to number
character strings with these instructions:

e S_CONYV converts (number string to a number value) or (number value to a number

string)

o STRG_VAL converts a number string to a number value with format options

® VAL_STRG converts a number value to a number string with format options

128

S7-1200 Programmable controller

System Manual, 04/2009, A5E02486680-01

Programming instructions

6.2 Extended instructions

LAD FBD
- S EoR | Select the pgrameter data types from the
Mo T 77 0 777 drop-down lists.
—EN EMD | —EN OUT}
L ouT | M END-

S_CONV (String Convert) converts a character string to the corresponding value, or a value
to the corresponding character string. The S_CONV instruction has no output formatting
options. This makes the S_CONYV instruction simpler, but less flexible, than the STRG_VAL
and VAL_STRG instructions.

S_CONV (String to value conversions)

Parameter | Parameter Data type Description
type
IN IN STRING Input character string
ouT ouT STRING, SINT, INT, DINT, USINT, Output number value
UINT, UDINT, REAL

Conversion of the string parameter IN starts at the first character and continues until the end
of the string, or until the first character is encountered that is not "0" through "9", "+", "-", or
".". The result value is provided at the location specified in parameter OUT. If the output
number value does not fit in the range of the OUT data type, then parameter OUT is setto 0
and ENO is set to FALSE. Otherwise, parameter OUT contains a valid result and ENO is set
to TRUE.

Input string format rules:

® |f a decimal point is used in the IN string, you must use the "." character.

® Comma characters "," used as a thousands separator to the left of the decimal point are
allowed and ignored.

® | eading spaces are ignored.

® Only fixed-point representation is supported. The characters "e" and "E" are not
recognized as exponential notation.

S_CONV (Value to string conversions)

Parameter | Parameter Data type Description
type
IN IN STRING, SINT, INT, DINT, USINT, Input number value
UINT, UDINT, REAL
ouT ouT STRING Output character string

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 129

Programming instructions

6.2 Extended instructions

An integer, unsigned integer, or floating point value IN is converted to the corresponding
character string at OUT. The parameter OUT must reference a valid string before the
conversion is executed. A valid string consists of a maximum string length in the first byte,
the current string length in the second byte, and the current string characters in the next
bytes. The converted string replaces characters in the OUT string starting at the first
character and adjusts the current length byte of the OUT string. The maximum length byte of
the OUT string is not changed.

How many characters are replaced depends on the parameter IN data type and number
value. The number of characters replaced must fit within the parameter OUT string length.
The maximum string length (first byte) of the OUT string should be greater than or equal to
the maximum expected number of converted characters.

The following table shows the maximum possible string lengths required for each supported
data type.

IN data type | Maximum number of converted Example Total string length including
characters in OUT string maximum and current length
bytes

USINT 3 255 5

SINT 4 -128 6

UINT 5 65535 7

INT 6 -32768 8

UDINT 10 4294967295 12

DINT 11 -2147483648 13

Output string format rules:
® Values written to parameter OUT do not use a leading "+" sign.
® Fixed-point representation is used (no exponential notation).

® The period character "." is used to represent the decimal point when parameter IN is the
REAL data type.

STRG_VAL instruction

130

LAD FBD

i STRG_VAL i STAG_VAL

Stiing o 7Y | | Stiing to 777

—EN ENO- —EN

{IN ouT lIN

| FORMAT {FORMAT our |

P P ENo-
Parameter | Parameter Data type Description

type

IN IN STRING The ASCII character string to convert
FORMAT IN WORD Output format options

S7-1200 Programmable controller

System Manual, 04/2009, A5E02486680-01

Programming instructions

6.2 Extended instructions

Parameter | Parameter Data type Description
type
P IN_OUT UINT IN: Index to the first character to be

converted (first character = 1)
OUT: Index to the next character after
conversion process ends

ouT ouT SINT, INT, DINT, USINT, | Converted number value
UINT, UDINT, REAL

STRG_VAL (String to Value) converts a number character string to the corresponding
integer or floating point representation. Conversion begins in the string IN at character offset
P and continues until the end of the string, or until the first character is encountered that is
not "+", " o et "E" or "0" to "9". The result is placed at the location specified in
parameter OUT. Parameter P is also returned as an offset count in the original string at the
position where the conversion terminated. STRING data must be initialized before execution

as a valid string in memory.

STRG_VAL FORMAT parameter

The FORMAT parameter for the STRG_VAL instruction is defined below. The unused bit
positions must be set to zero.

Bit Bit8 | Bit 7 Bit 0
16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 f r

f = Notation format 1= Exponential notation
0 = Fixed point notation
r = Decimal point format 1="," (comma character)
0 ="." (period character)
FORMAT (W#16#) Notation format Decimal point representation
0000 (default) Fixed point "
0001
0002 Exponential "
0003
0004 to FFFF lllegal values

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 131

Programming instructions

6.2 Extended instructions

Rules for STRG_VAL conversion:

If the period character "." is used for the decimal point, then commas "," to the left of the
decimal point are interpreted as thousands separator characters. The comma characters

are allowed and ignored.

If the comma character "," is used for the decimal point, then periods "." to the left of the
decimal point are interpreted as thousands separator characters. These period

characters are allowed and ignored.

Leading spaces are ignored.

VAL_STRG instruction

LAD FBD
STRG VAL_STRG
“?:‘;_m Sinmng | ¥ to Sting
—EN END~ —EM
M auT {IM
|SZE | SIZE
{FPREC |PREC
| FORMAT | FORMAT ouT |
P {P ENO
Parameter | Parameter Data type Description
type
IN IN SINT, INT, DINT, USINT, | Value to convert
UINT, UDINT, REAL
SIZE IN USINT Number of characters to be written to the
OUT string
PREC IN USINT The precision or size of the fractional
portion. This does not include the decimal
point.
FORMAT IN WORD Output format options
P IN_OUT UINT IN: Index to the first OUT string character
to be replaced (first character = 1)
OUT: Index to the next OUT string
character after replacement
ouT ouT STRING The converted string

VAL_STRG (Value to String) converts an integer, unsigned integer, or floating point value to
the corresponding character string representation. The value represented by parameter IN is
converted to a string referenced by parameter OUT. The parameter OUT must be a valid
string before the conversion is executed. The converted string will replace characters in the
OUT string starting at character offset count P to the number of characters specified by
parameter SIZE. The number of characters in SIZE must fit within the OUT string length,
counting from character position P. This instruction is useful for embedding number
characters into a text string. For example, you can put the numbers "120" into the string
"Pump pressure = 120 psi".

132

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

Parameter PREC specifies the precision or number of digits for the fractional part of the
string. If the parameter IN value is an integer, then PREC specifies the location of the
decimal point. For example, if the data value is 123 and PREC = 1, then the result is "12.3".
The maximum supported precision for the REAL data type is 7 digits.

If parameter P is greater than the current size of the OUT string, then spaces are added, up
to position P, and the result is appended to the end of the string. The conversion ends if the
maximum OUT string length is reached.

VAL_STRG FORMAT parameter

The FORMAT parameter for the VAL_STRG instruction is defined below. The unused bit
positions must be set to zero.

Bit Bit8 | Bit 7 Bit 0
16

0 0 0 0 0 0 0 0 0 0 0 0 0 s f r

s = Number sign character 1= use sign character "+" and "-"

0 = use sign character "-" only
f = Notation format 1= Exponential notation

0 = Fixed point notation
r = Decimal point format 1="" (comma character)

0 ="." (period character)
FORMAT (WORD) Number sign character | Notation format Decimal point

representation

W#16#0000 "-" only Fixed point "
W#16#0001
W#16#0002 Exponential
W#16#0003
W#16#0004 "+"and "-" Fixed Point "
W#16#0005
W#16#0006 Exponential
W#16#0007 "
W#16#0008 to lllegal values
W#H16#FFFF

Parameter OUT string format rules:

® | eading space characters are added to the leftmost part of the string when the converted
string is smaller than the specified size.

® \When the FORMAT parameter sign bit is FALSE, unsigned and signed integer data type
values are written to the output buffer without the leading "+" sign. The "-" sign is used if
required.
<leading spaces><digits without leading zeroes>'.'<PREC digits>

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 133

Programming instructions

6.2 Extended instructions

When the sign bit is TRUE, unsigned and signed integer data type values are written to
the output buffer always with a leading sign character.
<leading spaces><sign><digits without leading zeroes>".'<PREC digits>

When the FORMAT is set to exponential notation, REAL data type values are written to
the output buffer as:
<leading spaces><sign><digit> "' <PREC digits>'E' <sign><digits without leading zero>

When the FORMAT is set to fixed point notation, integer, unsigned integer, and real data
type values are written to the output buffer as:
<leading spaces><sign><digits without leading zeroes>'.'<PREC digits>

Leading zeros to the left of the decimal point (except the digit adjacent to the decimal
point) are suppressed.

Values to the right of the decimal point are rounded to fit in the number of digits to the
right of the decimal point specified by the PREC parameter.

The size of the output string must be a minimum of three bytes more than the number of
digits to the right of the decimal point.

Values are right-justified in the output string.

Conditions reported by ENO

134

When an error is encountered during the conversion operation, the following results will be
returned:

e ENOissettoO0.
e QOUT is set to 0, or as shown in the examples for string to value conversion.

® OUT is unchanged, or as shown in the examples when OUT is a string.

ENO status | Description

1 No error

lllegal or invalid parameter; for example, an access to a DB that does not exist

lllegal string where the maximum length of the string is 0 or 255

lllegal string where the current length is greater than the maximum length

The converted number value is too large for the specified OUT data type

o|o|o|o (o

The OUT parameter maximum string size must be large enough to accept the number
of characters specified by parameter SIZE, starting at the character position
parameter P

o

lllegal P value where P=0 or P is greater than the current string length

0 Parameter SIZE must be greater than parameter PREC

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions
6.2 Extended instructions

Examples of S_CONYV string to value conversion

IN string OUT data type OUT value ENO

"123" INT/DINT 123 TRUE
"-00456" INT/DINT -456 TRUE
"123.45" INT/DINT 123 TRUE
"+2345" INT/DINT 2345 TRUE
"00123AB" INT/DINT 123 TRUE
"123" REAL 123.0 TRUE
"123.45" REAL 123.45 TRUE
"1.23e-4" REAL 1.23 TRUE
"1.23E-4" REAL 1.23 TRUE
"12,345.67" REAL 12345.67 TRUE
"3.4e39" REAL 3.4 TRUE
"-3.4e39" REAL -3.4 TRUE
"1.17549e-38" REAL 1.17549 TRUE
"12345" SINT 0 FALSE
"A123" N/A 0 FALSE
N/A 0 FALSE
"++123" N/A 0 FALSE
"+.123" N/A 0 FALSE

Examples of S_CONYV value to string conversion

Data type IN value OUT string ENO

UINT 123 "123" TRUE
UINT 0 "0" TRUE
UDINT 12345678 "12345678" TRUE
REAL -INF "INF" FALSE
REAL +INF "INF" FALSE
REAL NaN "NaN" FALSE

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

135

Programming instructions

6.2 Extended instructions

Examples of STRG_VAL conversion

IN string FORMAT OUT data type OUT value ENO
(W#16#....)

"123" 0000 INT/DINT 123 TRUE
"-00456" 0000 INT/DINT -456 TRUE
"123.45" 0000 INT/DINT 123 TRUE
"+2345" 0000 INT/DINT 2345 TRUE
"00123AB" 0000 INT/DINT 123 TRUE
"123" 0000 REAL 123.0 TRUE
"-00456" 0001 REAL -456.0 TRUE
"+00456" 0001 REAL 456.0 TRUE
"123.45" 0000 REAL 123.45 TRUE
"123.45" 0001 REAL 12345.0 TRUE
"123,45" 0000 REAL 12345.0 TRUE
"123,45" 0001 REAL 123.45 TRUE
".00123AB" 0001 REAL 123.0 TRUE
"1.23e-4" 0000 REAL 1.23 TRUE
"1.23E-4" 0000 REAL 1.23 TRUE
"1.23E-4" 0002 REAL 1.23E-4 TRUE
"12,345.67" 0000 REAL 12345.67 TRUE
"12,345.67" 0001 REAL 12.345 TRUE
"3.4e39" 0002 REAL +INF TRUE
"-3.4e39" 0002 REAL -INF TRUE
"1.1754943e-38" 0002 REAL 0.0 TRUE
(and smaller)

"12345" N/A SINT 0 FALSE
"A123" N/A N/A 0 FALSE
N/A N/A 0 FALSE
"++123" N/A N/A 0 FALSE
"+-123" N/A N/A 0 FALSE

S7-1200 Programmable controller
136 System Manual, 04/2009, ASE02486680-01

Programming instructions

Examples of VAL_STRG conversion

6.2 Extended instructions

The examples are based on an OUT string initialized as follows:

"Current Temp = XXXXXXXXXX C"
The "x" character represents space characters allocated for the converted value.

Data IN value P SIZE FORMAT PREC | OUT string ENO
type (W#16#....)
Current Temp =
UINT 123 16 10 0000 0 Vv k. TRUE
Current Temp =
UINT 0 16 10 0000 2 X0 . 00 TRUE
Current Temp =
UDINT 12345678 16 10 0000 3 <12345.678 TRUE
Current Temp =
UDINT 12345678 16 10 0001 3 X12345,678 TRUE
Current Temp =
INT 123 16 10 0004 0 OO 23 TRUE
- Current Temp =
INT 123 16 10 0004 0 OOK-123 TRUE
- Current Temp =
REAL 0.00123 16 10 0004 4 XXX—0.0012 TRUE
- Current Temp =
REAL 0.00123 16 10 0006 4 21 2300E-3 TRUE
- Current Temp =
REAL INF 16 10 N/A 4 OO0~ INE FALSE
Current Temp =
REAL +INF 16 10 N/A 4 OO0 INE FALSE
Current Temp =
REAL NaN 16 10 N/A 4 OOxNaN FALSE
Current Temp =
UDINT 12345678 16 6 N/A 3 SOOI FALSE
6.2.2.2 String operation instructions
Your control program can use the following string and character instructions to create
messages for operator display and process logs.
LAD
LEN Get string length EN
String
= EHN END =
i ouT |
CONCAT Concatenate two strings CONCAT
Sting
-EH END -
1M1 out
N2
LEFT Get left substring from string LEFT
Sting
—EN EMD-
{IN ouT |
L
S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01 137

Programming instructions

6.2 Extended instructions

RIGHT

MID

DELETE

INSERT

REPLACE

FIND

String data type

Get right substring form string

Get middle substring from

string

Delete substring from string

Insert substring in string

Replace substring in string

Find substring or character in
string

RIGHT
Sting
- EN ENU -
{In our |

1L

INSERT
Sting
=EHN EMO =
fim out|
M2
{p

[REPLACE
Sting
-EN END -
Jimt ouT |
Mz [
L
P

FIND
EN END k

111 ouT |
M2

STRING data is stored as a 2-byte header followed by up to 254 character bytes of ASCII
character codes. A STRING header contains two lengths. The first byte is the maximum
length that is given in square brackets when you initialize a string, or 254 by default. The
second header byte is the current length that is the number of valid characters in the string.
The current length must be smaller than or equal to the maximum length. The number of
stored bytes occupied by the STRING format is 2 bytes greater than the maximum length.

Initialize your STRING data

STRING input and output data must be initialized as valid strings in memory, before
execution of any string instructions.

138

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

LEN
Parameter Parameter Data type Description
type
IN IN STRING Input string
ouT ouT UINT Number of valid characters of IN string
LEN (Length of string) gives the current length of the string IN at output OUT. An empty
string has a length of zero.
CONCAT
Parameter Parameter | Data type Description
type
IN1 IN STRING Input string 1
IN2 IN STRING Input string 2
ouT ouT STRING Combined string (string 1 + string 2)
CONCAT (Concatenate strings) joins STRING parameters IN1 and IN2 to form one string
provided at OUT. After concatenation, String IN1 is the left part and String IN2 is the right
part of the combined string. If the combined string is longer than the maximum allowed
length, the result string is limited to the maximum length and ENO is set to 0.
LEFT
Parameter Parameter | Data type Description
type
IN IN STRING Input string
L IN INT Length of the substring to be created, using the left-
most L characters of the IN string
ouT ouT STRING Output string

LEFT (Left substring) provides a substring made of the first L characters of string parameter

IN.

e |[f L is greater than the current length of the IN string, then the entire IN string is returned

in OUT.

® |f an empty string is the input, then an empty string is returned in OUT.

e [f L is negative or zero, then an empty string is returned and ENO is set to 0.

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

139

Programming instructions

6.2 Extended instructions

RIGHT

MID

DELETE

140

Parameter Parameter | Data type Description
type
IN IN STRING Input string
L IN INT Length of the substring to be created, using the right-
most L characters of the IN string
ouT ouT STRING Output string

RIGHT (Right substring) provides the last L characters of a string.

e |[f L is greater than the current length of the IN string, then the entire IN string is returned
in parameter OUT.

e |f an empty string is the input, then an empty string is returned in OUT.

® |f L is negative or zero, then an empty string is returned and ENO is set to 0.

Parameter | Parameter | Data type Description
type

IN IN STRING Input string

L IN INT Length of the substring to be created, using L characters of
the IN string, beginning at character position P

P IN INT Position of first substring character to be copied:
P= 1, for the initial character position of the IN string

ouT ouT STRING Output string

MID (Middle substring) provides the middle part of a string. The middle substring is L
characters long and starts at character position P (inclusive).

e |f the sum of L and P exceeds the current length of the STRING parameter IN, then a
substring is returned that starts at character position P and continues to the end of the IN

string.

® |f character position P is outside the current IN string length, then an empty string is
returned at OUT and ENO is set to 0.

e |f parameters P or L are equal to zero or negative, then an empty string is returned at
OUT and ENO is set to 0.

Parameter | Parameter | Data type Description
type
IN IN STRING Input string
L IN INT Number of characters to be deleted
IN INT Position of the first character to be deleted: The first
character of the IN string is position number 1
ouT ouT STRING Output string

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

INSERT

REPLACE

6.2 Extended instructions

DELETE (Delete substring) deletes L characters from string IN. Character deletion starts at
character position P (inclusive), and the remaining substring is provided at parameter OUT.

e |f L is equal to zero, then the input string is returned in OUT and ENO = TRUE.

e |f P is greater than the current length of the string IN, then the input string is returned in
OUT and ENO = FALSE.

e [f the sum of L and P is greater than the length of the input string, then the string is
deleted to the end.

e |f L is negative, orif P is equal to 0 or negative, then an empty string is returned and ENO
= FALSE.

® STRING data must be initialized before execution as a valid string in memory.

Parameter | Parameter | Data type Description
type

IN1 IN STRING Input string 1

IN2 IN STRING Input string 2

P IN INT Last character position in string IN1 before the insertion
point for string IN2. The first character of string IN1 is
position number 1.

ouT ouT STRING Result string

INSERT (Insert substring) inserts string IN2 into string IN1. Insertion begins after the

character at position P.

e [f P is greater than the current length of the IN1 string, then the IN2 string is appended to
IN1 and ENO = FALSE.

e |f P is negative or zero, then parameter OUT is an empty string and ENO = FALSE.

® |f the new string length after insertion is longer than the maximum allowed for string OUT,
then the result string is limited to the maximum length of parameter OUT and ENO =

FALSE.

Parameter | Parameter |Data type Description
type

IN1 IN STRING Input string
IN2 IN STRING String of replacement characters
L IN INT Number of characters to replace
P IN INT Position of first character to be replaced
ouT ouT STRING Result string

REPLACE (Replace substring) replaces L characters in the string parameter IN1.
Replacement starts at string IN1 character position P (inclusive), with replacement
characters coming from the string parameter IN2.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

141

Programming instructions

6.2 Extended instructions

FIND

If parameter L is equal to zero, then the string IN2 is inserted at position P of string IN1
without deleting any characters from string IN1.

If P is equal to one, then the first L characters of string IN1 are replaced with string IN2
characters.

If P is greater than the length of string IN1, then the string IN2 is appended to the string
IN1 and ENO = FALSE.

If L is negative, or if P is negative or zero, then an empty string is returned to parameter
OUT and ENO = FALSE.

If the new string length after replacement is longer than the maximum allowed for string
OUT, then the result string is limited to the maximum length of parameter OUT and ENO
= FALSE.

Parameter | Parameter | Data type Description
type
IN1 IN STRING Search inside this string
IN2 IN STRING Search for this string
ouT ouT INT Character position in string IN1 of the first search match

FIND (Find substring) provides the character position of the substring or character specified
by IN2 within the string IN1. The search starts on the left. The character position of the first
occurrence of IN2 string is returned at OUT. If the string IN2 is not found in the string IN1,

then zero is returned.

Conditions reported by ENO for string operations

LEN

CONCAT

142

ENO Condition ouT

1 Always TRUE, no invalid conditions Valid string length

ENO Condition ouT

1 No errors detected Valid characters

0 Current length of IN1 exceeds maximum length | Current length is set to 0

of IN1, or current length of IN2 exceeds
maximum length of IN2 (invalid string)

Maximum length of IN1, IN2 or OUT does not fit
within allocated memory range

Maximum length of IN1, IN2 or OUT is O or 255
(illegal length)

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

ENO

Condition

ouT

Resulting string after concatenation is larger
than maximum length of OUT string

Resulting string characters are copied
until the maximum length of the OUT is
reached

LEFT

ENO

Condition

ouT

No errors detected

Valid characters

Current length of IN exceeds maximum length of
IN (invalid string)

Maximum length of IN or OUT does not fit within
allocated memory range

L is less than or equal to 0

Maximum length of IN or OUT is 0 or 255 (illegal
length)

Current length is set to 0

Substring length (L) to be copied is larger than
maximum length of OUT string

Characters are copied until the maximum
length of OUT is reached

RIGHT

ENO

Condition

ouT

No errors detected

Valid characters

Current length of IN exceeds maximum length of
IN (invalid string)

Maximum length of IN or OUT does not fit within
allocated memory range

L is less than or equal to 0

Maximum length of IN or OUT is 0 or 255 (illegal
length)

Current length is set to 0

Substring length (L) to be copied is larger than
maximum length of OUT string

Characters are copied until the maximum
length of OUT is reached

MID

ENO

Condition

ouT

No errors detected

Valid characters

Current length of IN exceeds maximum length of
IN (invalid string)

Maximum length of IN or OUT does not fit within
allocated memory range

L or P is less than or equal to 0

P is greater than maximum length of IN

Current length is set to 0

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

143

Programming instructions

6.2 Extended instructions

DELETE

INSERT

144

ENO Condition OouT
Maximum length of IN or OUT is 0 or 255 (illegal
length)
Substring length (L) to be copied is larger than Characters are copied beginning at
maximum length of OUT string position P until the maximum length of
OUT is reached
ENO Condition ouT
1 No errors detected Valid characters
0 P is greater than current length of IN IN is copied to OUT with no characters
deleted
Current length of IN exceeds maximum length of | Current length is set to 0
IN (invalid string)
Maximum length of IN or OUT does not fit within
allocated memory range
L is less than 0, or P is less than or equal to 0
Maximum length of IN or OUT is 0 or 255 (illegal
length)
Resulting string after characters are deleted is Resulting string characters are copied
larger than maximum length of OUT string until the maximum length of OUT is
reached
ENO Condition ouT
1 No errors detected Valid characters
0 P is greater than length of IN1 IN2 is concatenated with IN1

immediately following the last IN1
character

P is less than or equal to 0

Current length of IN1 exceeds maximum length
of IN1, or current length of IN2 exceeds
maximum length of IN2 (invalid string)

Maximum length of IN1, IN2 or OUT does not fit
within allocated memory range

Maximum length of IN1, IN2 or OUT is 0 or 255
(illegal length)

Current length is set to 0

Resulting string after insertion is larger than
maximum length of OUT string

Resulting string characters are copied
until the maximum length of OUT is
reached

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

Condition

ouT

No errors detected

Valid characters

P is greater than length of IN1

IN2 is concatenated with IN1
immediately following the last IN1
character

P points within IN1, but fewer than L characters
remain in IN1

IN2 replaces the end characters of IN1
beginning at position P

L is less than O, or P is less than or equal to 0

Current length of IN1 exceeds maximum length
of IN1, or current length of IN2 exceeds
maximum length of IN2 (invalid string)

Maximum length of IN1, IN2 or OUT does not fit
within allocated memory range

Maximum length of IN1, IN2 or OUT is 0 or 255
(illegal length)

Current length is set to 0

Resulting string after replacement is larger than
maximum length of OUT string

Resulting string characters are copied
until the maximum length of OUT is
reached

Condition

ouT

No errors detected

Valid character position

REPLACE
ENO
y
0
FIND
ENO
y
0

Current length of IN1 exceeds maximum length
of IN1, or current length of IN2 exceeds
maximum length of IN2 (invalid string)

Maximum length of IN1 or IN2 does not fit within
allocated memory range

IN2 is larger than IN1

Maximum length of IN1 or IN2 is 0 or 255 (illegal
length)

Character position is set to 0

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

145

Programming instructions

6.2 Extended instructions

6.2.3

6.2.3.1

Program control instructions

Reset scan cycle watchdog instruction

RE_TRIGR (Re-trigger scan time watchdog) is used to extend the maximum time allowed
before the scan cycle watchdog timer generates an error.

LAD/FBD

TR
—EN END}

The RE_TRIGR instruction is used to re-start the scan cycle timer during a single scan cycle.
This has the effect of extending the allowed maximum scan cycle time by one maximum
cycle time period, from the last execution of the RE_TRIGR function.

The S7-1200 CPUs restrict the use of the RE_TRIGR instruction to the program cycle, for
example, OB1 and functions that are called from the program cycle. This means that the
watchdog timer is reset, and ENO = EN, if RE_TRIGR is called from any OB of the program
cycle OB list.

ENO = FALSE and the watchdog timer is not reset if RE_TRIGR is executed from a start up
OB, an interrupt OB, or an error OB.

Setting the PLC maximum cycle time

You can set the value for maximum scan cycle time in the PLC device configuration for
"Cycle time".

Cycle time monitor Minimum value Maximum value Default value

Maximum cycle time 1ms 6000 ms 150 ms

Watchdog timeout

146

If the maximum scan cycle timer expires before the scan cycle has been completed, an error
is generated. If the error handling code block OB80 is included in the user program, the PLC
executes OB 80 where you may add program logic to create a special reaction. If OB80 is
not included, the first timeout condition is ignored.

If a second maximum scan time timeout occurs in the same program scan (2 times the
maximum cycle time value), an error is triggered that causes the PLC to transition to STOP
mode.

In STOP mode, your program execution stops while PLC system communications and
system diagnostics continue.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions
6.2 Extended instructions

6.2.3.2 Stop scan cycle instruction

STP (Stop PLC scan cycle) puts the PLC in Stop mode. When the PLC is in Stop mode, the
execution of your program and output Q address updates from the process image are
stopped.

Stop transition output safe states for integrated, signal board, and signal module outputs
(digital or analog) are set in the PLC device configuration properties tab. You have the option
to freeze outputs in the last state or set up (digital or analog) output safe states. The default
state for digital outputs is FALSE and the default value for analog outputs is 0.

If EN = TRUE, then the PLC will enter STOP mode, program execution stops, and the ENO
state is meaningless. Otherwise, EN = ENO = 0.

6.2.3.3 Get Error instructions

The get error instructions provide information about program block execution errors.
Program blocks must have the "handle errors within block:" attribute checked in the block
properties configuration before using the GET_ERROR or GET_ERR_ID instructions.

e GET_ERROR indicates that a program block execution error has occurred and fills a
predefined error data structure with detailed error information.

e GET_ERR_ID indicates that a program block execution error has occurred and reports
the ID (identifier code) of the error.

GET_ERROR
LAD FBD
[GetErer | | GetEnor |
4EM EMD - ERROR |
ERRODA | | END =
Parameter Data type Description
ERROR ErrorStruct Error data structure

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 147

Programming instructions

6.2 Extended instructions

Parameter ERROR data structure
You can rename the structure, but not the members within the structure.

ErrorStruct data element Data Description
type
ERROR_ID WORD | Error identifier
FLAGS BYTE | Indicates whether the error occurred during a call to another
block:
e 16#01 if error was during a call
e 16#00 otherwise
REACTION BYTE | Reaction to the error:
e 0 = Ignore; nothing written (write error)
e 1 = Substitute: a 0 was used for the value (read error)
e 2 = Skip the instruction (system error)
BLOCK_TYPE BYTE | Block type where error occurred:
° 1=0B
e 2=FC
e 3=FB
PAD_O BYTE | Internal fill byte for alignment purposes, will be 0
CODE_BLOCK_NUMBER | UINT Block number where error occurred
ADDRESS UDINT | Internal memory location of instruction which encountered
error
MODE BYTE | Internal mapping for how the remaining fields will be
interpreted
Mode (A) (B (©) (D) (E)
0
1 Offset
2 Area
3 Location Scope Number
4 Area Offset
5 Area DB no. | Offset
6 PtrNo./Acc Area DB no. | Offset
7 PtrNo./Acc | Slot No./ | Area DB no. | Offset
Scope
PAD_1 BYTE | Internal fill byte for alignment purposes; not used, will be 0
OPERAND_NUMBER UINT Internal instruction operand number
POINTER_NUMBER_ UINT | (A) Internal instruction pointer location
LOCATION
SLOT_NUMBER_SCOPE |UINT | (B) Internal memory storage location
AREA BYTE | (C) Memory area referenced when the error was encountered:
e L:16#40 - 4E, 86, 87, 8E, 8F, CO-CE
o |:16#81
o Q:16#82
o M: 16#83
o DB: 16#84, 85, 8A, 8B

S7-1200 Programmable controller
148 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

ErrorStruct data element Data Description
type

PAD 2 BYTE | Internal fill byte for alignment purposes; not used, will be 0

DB_NUMBER UINT | (D) DB which was referenced when a DB error occurred, 0
otherwise

OFFSET UDINT | (E) The bit offset referenced when the error occurred
(example: 12 = byte 1, bit 4)

GET_ERR_ID

LAD FBD

[GetEmodD | [GetEmorD |

4EM EMO — ID |

' ID | _ END |-

Parameter Data type Description

ID WORD Error identifier

Parameter ID: Error identifier values for the ErrorStruct ERROR_ID member

ERROR_ID ERROR_ID Program block execution error
Hexadecimal Decimal

2503 9475 Uninitialized Pointer Error

2522 9506 Operand Out of Range Read Error
2523 9507 Operand Out of Range Write Error
2524 9508 Invalid Operand Read Error

2525 9509 Invalid Operand Write Error

2528 9512 Data Alignment Read Error

2529 9513 Data Alignment Write Error

2530 9520 DB Write Error

253A 9530 Global DB Does Not Exist

253C 9532 Wrong Version or FC Does Not Exist
253D 9533 SFC Does Not Exist

253E 9534 Wrong Version or FB Does Not Exist
253F 9535 SFB Does Not Exist

2575 9589 Program Nesting Depth Error

2576 9590 Local Data Allocation Error

2942 10562 Direct Input Read Error

2943 10563 Direct Output Write Error

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 149

Programming instructions

6.2 Extended instructions

Operation

By default, the PLC will respond to a block execution error by logging an error in the
diagnostic buffer and transitioning to STOP mode. However, if you place one or more
GET_ERROR or ERR_ID instructions within a code block, this block is now set to handle
errors within the block. In this case, the PLC does not transition to STOP and does not log
an error in the diagnostics buffer. Instead, the error information is reported in the output of
the GET_ERROR or GET_ERR_ID instruction. You can read the detailed error information
with the GET_ERROR instruction, or read just the error identifier with GET_ERR_ID
instruction. Normally the first error is the most important, with the following errors only
consequences of the first error.

The first execution of a GET_ERROR or GET_ERR_ID instruction within a block returns the
first error detected during block execution. This error could have occurred anywhere
between the start of the block and the execution of either GET_ERROR or GET_ERR_ID.
Subsequent executions of either GET_ERROR or GET_ERR_ID return the first error since
the previous execution of GET_ERROR or GET_ERR_ID. The history of errors is not saved,
and execution of either instruction will re-arm the PLC system to catch the next error.

The ErrorStruct data type used by the GET_ERROR instruction can be added in the Data
block editor and block interface editors, so your program logic can access these values.
Select ErrorStruct from the data type drop-down list to add this structure. You can create
multiple ErrorStructs by using unique names. The members of an ErrorStruct cannot be
renamed.

Error condition indicated by ENO
If EN = TRUE and GET_ERROR or GET_ERR_ID executes, then:
e ENO = TRUE indicates a code block execution error occurred and error data is present
® ENO = FALSE indicates no code block execution error occurred

You can connect error reaction program logic to ENO which activates after an error occurs. If
an error exists, then the output parameter stores the error data where your program has
access to it.

GET_ERROR and GET_ERR_ID can be used to send error information from the currently
executing block (called block) to a calling block. Place the instruction in the last network of
the called block program to report the final execution status of the called block.

S7-1200 Programmable controller
150 System Manual, 04/2009, ASE02486680-01

Programming instructions
6.2 Extended instructions

6.2.4 Communications instructions

6.2.4.1 Open Ethernet Communication
Open Ethernet communication with automatic connect/disconnect (TSEND_C and TRCV_C)

TSEND_C description

TSEND_C establishes a TCP or ISO on TCP communication connection to a partner station,
sends data, and can terminate the connection. After the connection is set up and
established, it is automatically maintained and monitored by the CPU. TSEND_C combines
the functions of TCON, TDISCON and TSEND.

TSEND_C function
® To establish a connection, execute TSEND_C with CONT = 1.
o After successful establishing of the connection, TSEND_C sets the DONE parameter for
one cycle.

® To terminate the communication connection, execute TSEND_C with CONT = 0. The
connection will be aborted immediately. This also affects the receiving station. The
connection will be closed there and data inside the receive buffer could be lost.

® To send data over an established connection, execute TSEND_C with a rising edge on
REQ. After a successful send operation, TSEND_C sets the DONE parameter for one
cycle.

® To establish a connection and send data, execute TSEND_C with CONT =1 and REQ =
1. After a successful send operation, TSEND_C sets the DONE parameter for one cycle.

TRCV_C description

TRCV_C establishes a TCP or ISO on TCP communication connection to a partner CPU,
receives data, and can terminate the connection. After the connection is set up and
established, it is automatically maintained and monitored by the CPU. The TRCV_C
instruction combines the functions of the TCON, TDISCON, and TRCYV instructions.

TRCV_C function
1. Establish a connection: Execute TRCV_C with parameter CONT = 1.

2. Receive data: Execute TRCV_C with parameter EN_R = 1. Receive data continuously
when parameters EN_R =1 and CONT = 1.

3. Terminate the connection: execute TRCV_C with parameter CONT = 0. The connection
will be aborted immediately and data could be lost.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 151

Programming instructions

6.2 Extended instructions

Receive modes
TRCV_C handles the same receive modes as the TRCV instruction.

The following table shows how data is entered in the receive area.

Protocol Entering the data in the receive | Parameter" Value of the LEN
variant area connection_type" parameter
TCP Ad hoc mode B#16#11 0
TCP Data reception with specified B#16#11 <>0
length
ISO on TCP protocol-controlled B#16#12 0 (recommended) or <> 0

TCP / ad hoc mode

The ad hoc mode exists only with the TCP protocol variant. You set ad hoc mode by
assigning 0 to the LEN parameter.

The receive area is identical to the area formed by DATA. A maximum of 1472 bytes are
received.

TCP / data reception with specified length

You set data reception with specified length by assigning a value other than 0 to the LEN
parameter.

The receive area is defined by the LEN and DATA parameters.

ISO on TCP / protocol-controlled data transfer
With the ISO on TCP protocol variant, data is transferred protocol-controlled.

The receive area is defined by the LEN and DATA parameters.

Note

Due to the asynchronous processing of TSEND_C, you must keep the data in the sender
area consistent until the DONE parameter or the ERROR parameter assumes the values
TRUE.

For TSEND_C, a TRUE state at the parameter DONE means that the data was sent

successfully. It does not mean that the connection partner CPU actually read the receive
buffer.

Due to the asynchronous processing of TRCV_C, the data in the receiver area are only
consistent when parameter DONE = 1.

The following table shows the relationships between parameters BUSY, DONE and ERROR.

BUSY DONE ERROR | Description
TRUE irrelevant |irrelevant | The job is being processed.
FALSE TRUE FALSE The job successfully completed.

S7-1200 Programmable controller
152 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

BUSY

DONE ERROR

Description

FALSE

FALSE TRUE

The job was ended with an error. The cause of the error can be
found in the STATUS parameter.

FALSE

FALSE FALSE

A new job was not assigned.

TSEND_C parameters

LAD FBD
“TSEND_C_DB" "TSEND_C_DB™
| TSEND_C [TSEND_C
—EN ENO— _EN
< RED DOMEN _|Reg
- CONT BUSY — COMT DOME =
[LEM ERROR 4 LEM BUSY -
{ COMNECT STATUS | CONMECT ERROR =
{DaTA DATA STATUS
- COM_RST — COM_RST END -
Parameter Parameter Data type Description
type
REQ INPUT BOOL Control parameter REQ starts the send job with the
connection described in CONNECT on a rising edge.
CONT INPUT BOOL Control parameter CONT:
e 0: disconnect
e 1: establish and hold connection
LEN INPUT INT Maximum number of bytes to be sent with the job.
Refer to Relationship between CPU and Protocol Variant
and Transferable Data Length.
CONNECT IN_OUT ANY Pointer to the connection description
DATA IN_OUT ANY Send area; contains address and length of data to be
sent.
COM_RST IN_OUT BOOL COM_RST parameter:
e 1: Complete restart of the function block, existing
connection will be terminated.
DONE OUTPUT BOOL DONE status parameter:
e 0: Job not yet started or still running.
e 1: Job executed without error.
BUSY OUTPUT BOOL BUSY status parameter:
e 0:Job is completed.
e 1:Job is not yet completed. A new job cannot be
triggered.

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

153

Programming instructions

6.2 Extended instructions

Parameter Parameter Data type | Description
type
ERROR OUTPUT BOOL ERROR status parameter:
e 1: Error occurred during processing. STATUS
provides detailed information on the type of error.
STATUS OUTPUT WORD STATUS status parameter: Error information
TRCV_C parameters
LAD FBD
“TRCV_C_DE" “TRCV_C_DB"

[TREV. T 1 TRCV_C |
—EN ENOL —EM
-{EM_R DOME = =EN_R DONE =
= CONT BUSY - — CONT BUSY =

{LEM ERADR - {LEN ERROR =

| COMMECT STATUS | { COMMECT STATUS

DATA RCVD_LEM | | DATA RCVD_LEM
= COM_RST = COM_AST ENO =

Parameter Parameter Data type | Description
type
EN_R IN BOOL Control parameter enabled to receive: When EN_R = 1,
TRCV_C is ready to receive. The receive job is
processed.

CONT IN BOOL Control parameter CONT:

e 0: disconnect

e 1: establish and hold connection

LEN IN INT Length of the receive area in bytes

For the meaning of LEN = 0 or LEN <> 0 see above
(receive modes).

For the value ranges, see Relationship between CPU
and Protocol Variant (connection_type) and Transferable
Data Length.

CONNECT IN_OUT ANY Pointer to the connection description

DATA IN_OUT ANY Receive area contains start address and maximum
length of received data.

COM_RST IN_OUT BOOL COM_RST parameter:

e 1: Complete restart of the function block; existing
connection will be terminated.

DONE ouT BOOL Status parameter DONE:

e 0: Job not yet started or still running.

e 1: Job executed without error.

S7-1200 Programmable controller
154 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

Parameter Parameter Data type | Description
type
BUSY ouT BOOL BUSY status parameter:
e 0:Jobis completed.
e 1:Job is not yet completed. A new job cannot be
triggered.
ERROR ouT BOOL ERROR status parameter:
e 1: Error occurred during processing. STATUS
provides detailed information on the type of error.
STATUS ouT WORD STATUS status parameter: Error information
RCVD_LEN |OUT INT Amount of data actually received, in bytes
Parameters Error and Status
ERROR |STATUS Description
(W#16#...)
0 0000 Job executed without error
0 7000 No job processing active
0 7001 Start job processing, establishing connection, waiting for connection partner
0 7002 Data being received
0 7003 Connection being terminated
0 7004 Connection established and monitored, no job processing active
1 8085 LEN parameter has the value 0 or is greater than the largest permitted value
1 8086 The ID parameter is outside the permitted range
1 8087 Maximum number of connections reached; no additional connection
possible
1 8088 LEN parameter is larger than the memory area specified in DATA,; receiving
memory area is too small
1 8089 The parameter CONNECT parameter does not point to a data block.
1 8091 Nesting depth exceeded
1 809A The CONNECT parameter points to a field that does not match the length of
the connection description.
1 809B The local_device_id in the connection description does not match the CPU.
1 80A1 Communications error:
¢ The specified connection was not yet established
e The specified connection is currently being terminated; transmission
over this connection is not possible
e The interface is being reinitialized
1 80A3 Attempt being made to terminate a nonexistent connection
1 80A7 Communications error: you have called TDISCON before TCON was
complete (TDISCON must first completely terminate the connection
referenced by the ID)
1 80B2 The parameter CONNECT parameter points to a data block that was
generated with the keyword UNLINKED

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

155

Programming instructions

6.2 Extended instructions

ERROR | STATUS Description
(W#16#...)
1 80B3 Inconsistent parameters:
e Errorin the connection description
e Local port (parameter local_tsap_id) is already present in another
connection description
e ID in the connection description different from the ID specified as
parameter
1 80B4 When using the protocol variant ISO on TCP (connection_type = B#16#12)
for passive establishment of a connection (active_est = FALSE), you
violated one or both of the following conditions: "local_tsap_id_len
>= B#16#02" and/or "local_tsap_id[1] = B#16#EQ".
1 80C3 All connection resources are in use.
1 80C4 Temporary communications error:
e The connection cannot be established at this time
e The interface is receiving new parameters
e The configured connection is currently being removed by a TDISCON
1 8722 CONNECT parameter: Source area invalid: area does not exist in DB
1 873A CONNECT parameter: Access to connection description not possible (e.g.
DB not available)
1 877F CONNECT parameter: Internal error such as an invalid ANY reference

Open Ethernet communication with connect/disconnect control

Ethernet communication using TCP and ISO on TCP protocols
These program instructions control the communication process:
1. TCON makes a connection.
2. TSEND and TRCV send and receive data.
3. TDISCON breaks the connection.

Use with TCP and ISO on TCP

Both communication partners execute the TCON instruction to set up and establish the
communications connection. You use parameters to specify the active and passive
communication end point partners.

After the connection is set up and established, it is automatically maintained and monitored
by the CPU.

If the connection is terminated due to a line break or due to the remote communications
partner, for example, the active partner attempts to reestablish the configured connection.
You do not have to execute TCON again.

An existing connection is terminated and the set-up connection is removed when the
TDISCON instruction is executed or when the CPU has gone into STOP mode. To set up
and reestablish the connection, you must execute TCON again.

S7-1200 Programmable controller
156 System Manual, 04/2009, ASE02486680-01

Programming instructions

Functional description

6.2 Extended instructions

TCON, TDISCON, TSEND, and TRCV operate asynchronously, which means that the job
processing extends over multiple instruction executions.

For example, you start a job for setting up and establishing a connection by executing an
instruction TCON with parameter REQ = 1. Then you use additional TCON executions to
monitor the job progress and test for job completion with parameter DONE.

The following table shows the relationships between BUSY, DONE, and ERROR. Use the
table to determine the current job status.

TCON, TDISCON, TSEND, and TRCYV job status parameters:

BUSY DONE ERROR | Description
TRUE irrelevant |irrelevant | The job is being processed.
FALSE TRUE FALSE The job successfully completed.
FALSE FALSE TRUE The job was ended with an error. The cause of the error can be
found in the STATUS parameter.
FALSE FALSE FALSE A new job was not assigned.
TCON
LAD FBD
“T_COM_DE" “T_COM_DE_1"
TCON i TCON
TCOM_Param { TCOM_Paaen
—EN END [~ DONE =
- REQ DOMNE 14 —{EN BUSY -
I BUSY = REQ ERROR =
COMMNECT ERROR 4 {ID STATUS
STATUS | {CONNECT END -
Parameter Parameter | Data type Description
type
REQ IN BOOL Control parameter REQUEST starts the job for
establishing the connection specified by ID. The job
starts at rising edge.
ID IN CONN_OUC Reference to the connection to be established to the
(WORD) remote partner, or between the user program and the
communication layer of the operating system. ID must
be identical to the associated parameter ID in the local
connection description.
Value range: W#16#0001 to W#16#0FFF
CONNECT IN_OUT TCON-Param | Pointer to the connection description
DONE ouT BOOL Status parameter DONE:
e 0: Job not yet started or still running
e 1:Job executed without error

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

157

Programming instructions

6.2 Extended instructions

TDISCON

158

Parameter Parameter | Data type Description
type
BUSY ouT BOOL e BUSY = 1: Job is not yet complete
e BUSY =0: Job is complete
ERROR ouT BOOL Status parameter ERROR:
ERROR = 1: An error occurred in job processing.
STATUS provides detailed information on the type of
error.
STATUS ouT WORD Status parameter STATUS: Error information
LAD FBD
“T_DISCOM_ *T_DISCOM_
DB” i
[TDISCON | TDISCON |
—{EN EMO — DOMNE (-
=FAED DOME =4 BUSY -
(1] BUSY o —EM ERROR —
ERROR 4 —REQ STATUS |
AL L END |-
Parameter | Parameter Data type Description
type
REQ IN BOOL Control parameter REQUEST starts the job for
establishing the connection specified by ID. The job
starts at rising edge.
ID IN CONN_OUC | Reference to the connection to be terminated to the
(WORD) remote partner or between the user program and the
communications level of the operating system. ID must
be identical to the associated parameter ID in the local
connection description.
Value range: W#16#0001 to W#16#0FFF
DONE ouT BOOL Status parameter DONE:
e 0: Job not yet started or still running
e 1:Job executed without error
BUSY ouT BOOL e BUSY = 1: Job is not yet complete
e BUSY =0: Job is complete
ERROR ouT BOOL ERROR = 1: Error occurred during processing.
STATUS ouT WORD Error code

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

TCP and ISO on TCP

TDISCON terminates a communications connection from the CPU to a communication

partner.
TSEND
LAD FBD
“T_SEND_DE_ "T_E.E_‘]wm_DB._
T ..
T S S
Wit bo Vasiant Uit bo Variart
—{EM EMO = —EN DONE —
= AEQ DOME - — REQ BUSY —
i BUSY =] ERROR =
LEN ERROFR -1 {LEN STATUS |
|DATA STATUS | {DaTA EWDR-
Parameter | Parameter Data type Description
type
REQ IN BOOL Control parameter REQUEST starts the send job on a
rising edge.
The data is transferred from the area specified by
DATA and LEN.
ID IN CONN_OUC | Reference to the associated connection. ID must be
(WORD) identical to the associated parameter ID in the local
connection description.
Value range: W#16#0001 to W#16#0FFF
LEN IN INT Maximum number of bytes to be sent with the job
DATA IN_OUT VARIANT Pointer to data area to send:
Sender area; contains address and length. The
address refers to:
e The process image input table
e The process image output table
e A bit memory
A data block
DONE ouT BOOL Status parameter DONE:
e 0: Job not yet started or still running.
e 1: Job executed without error.
BUSY ouT BOOL e BUSY = 1: The job is not yet complete. A new job
cannot be triggered.
e BUSY =0: Job is complete.
ERROR ouT BOOL Status parameter ERROR:
ERROR = 1: Error occurred during processing.
STATUS provides detailed information on the type of
error
STATUS ouT WORD Status parameter STATUS: Error information

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 159

Programming instructions

6.2 Extended instructions

Note

Due to the asynchronous processing of TSEND, you must keep the data in the sender area
consistent until the DONE parameter or the ERROR parameter assumes the value TRUE.

TRCV
LAD FBD
“T_RCY_DB™ “T_RCV_DB"
TROV TRCV
Ut 1o Vaiant Ulink 1o Variant
—{EN EMD |— NDR: =
JENR MDR b —EM L
|||:| BUSY —EMN_R ERROR —
LEM ERROR - o STATUS |
DATA STATUS |LEN RCVD_LEM |
RCVD_LEN {DATA END b=
Parameter Parameter Data type Description
type
EN_R IN BOOL Control parameter enabled to receive: With EN_R = 1,
TRCV is ready to receive. The receive job is being
processed.
ID IN CONN_OUC | Reference to the associated connection. ID must be
(WORD) identical to the associated parameter ID in the local
connection description.
Value range: W#16#0001 to W#16#0FFF
LEN IN INT Length of the receive area in bytes
For the meaning of LEN = 0 or LEN <> 0, see above
(receive modes of TRCV).
DATA IN_OUT VARIANT Pointer to received data:
Receive area (see definition above); contains address
and length.
The address refers to:
e The process image input table
e The process image output table
e A bit memory
A data block
NDR ouT BOOL Status parameter NDR:
e NDR = 0: Job not yet started or still running.
e NDR = 1: Job successfully completed.
BUSY ouT BOOL e BUSY = 1: The job is not yet complete. A new job
cannot be triggered.
e BUSY =0: Job is complete.
S7-1200 Programmable controller
160 System Manual, 04/2009, ASE02486680-01

Programming instructions

Receive area

6.2 Extended instructions

Parameter Parameter Data type Description
type
ERROR ouT BOOL Status parameter ERROR:

ERROR=1: Error occurred during processing. STATUS
provides detailed information on the type of error.

STATUS ouT WORD Status parameter STATUS: Error information
RCVD_LEN |OUT INT Amount of data actually received, in bytes
Note

Due to the asynchronous processing of TRCV, the data in the receive area are only
consistent when the NDR parameter assumes the value TRUE.

This is the area in which TRCV writes the received data.
The receive area is specified by the following two variables:
e Pointer to the start of the area

® |ength of the area

The length of the area is specified depending on the protocol variant being used by the LEN
parameter (if LEN <> 0), or the length information of the DATA parameter (if LEN = 0).

Receive modes of TRCV

The following table shows how TRCV enters the received data in the receive area.

Protocol variant Entering the data in the Parameter Value of the LEN parameter
receive area connection type

TCP Ad hoc mode B#16#11 0

TCP Data reception with B#16#11 <>0
specified length

ISO on TCP protocol-controlled B#16#12 0 (recommended) or <> 0

TCP / ad hoc mode

The ad hoc mode exists only with the TCP protocol variant. You set ad hoc mode by
assigning 0 to the LEN parameter.

The receive area is identical to the area formed by DATA. A maximum of 1472 bytes are
received.

Immediately after receiving a block of data, TRCV enters the data in the receive area and
sets NDR to 1.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 161

Programming instructions

6.2 Extended instructions

TCP / data reception with specified length

You set data reception with specified length by assigning a value other than 0 to the LEN
parameter.

The receive area is defined by the LEN and DATA parameters.

As soon as LEN bytes have been received, TRCV transfers them to the receive area and
sets NDR to 1.

ISO on TCP / protocol-controlled data transfer
With the ISO on TCP protocol variant, data is transferred protocol-controlled.
The receive area is defined by the LEN and DATA parameters.

As soon as all the job data has been received, TRCV transfers it to the receive area and sets
NDR to 1.

Condition codes for TCON

ERROR | STATUS Explanation
(W#16#...)

0 0000 Connection was established successfully

0 7000 No job processing active

0 7001 Start job processing, establishing connection

0 7002 Follow-on call (REQ irrelevant), connection being established

1 8086 The ID parameter is outside the permitted range.

0 8087 Maximum number of connections reached; no additional connection possible

1 809B The local_device_id in the connection description does not match the CPU.

1 80A1 e Connection or port is already occupied by user

1 80A2 Local or remote port is occupied by the system

1 80A3 Attempt being made to re-establish an existing connection

1 80A4 IP address of the remote connection end point is invalid; it may match the
local IP address

1 80A7 Communications error: you executed TDISCON before TCON was complete.
TDISCON must first completely terminate the connection referenced by the
ID.

1 80B3 Inconsistent parameter assignment: Group error for the error codes
W#16#80A0 to W#16#80A2, W#16#80A4, W#16#80B4 to W#16#80B9

1 80B5 Error in parameter active_est

1 80B6 Parameter assignment error in parameter connection_type

1 80B7 Error in one of the following parameters: block_length, local_tsap_id_len,
rem_subnet_id_len, rem_staddr_len, rem_tsap_id_len, next_staddr_len

1 80B8 Parameter in the local connection description and Parameter ID are different

S7-1200 Programmable controller
162 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

ERROR | STATUS Explanation

(W#16#...)
1 80C3 All connection resources are in use.
1 80C4 Temporary communications error:

e The connection cannot be established at this time.
e The interface is receiving new parameters.
e The configured connection is currently being removed by TDISCON.

Condition codes for TDISCON

ERROR | STATUS | Explanation
(W#16#...)

0 0000 Connection was terminated successfully

0 7000 No job processing active

0 7001 Start of job processing, connection being terminated

0 7002 Follow-on call (REQ irrelevant), connection being terminated

1 8086 The ID parameter is not in the permitted address range.

1 80A3 Attempt being made to terminate a non-existent connection

1 80C4 Temporary communications error: The interface is receiving new parameters
or the connection is currently being established.

Condition codes for TSEND
ERROR | STATUS Explanation
(W#16#...)

0 0 Send job completed without error

0 7000 No job processing active

0 7001 Start of job processing, data being sent: During this processing the operating
system accesses the data in the DATA send area.

0 7002 Follow-on call (REQ irrelevant), job being processed: The operating system
accesses the data in the DATA send area during this processing.

1 8085 LEN parameter has the value 0 or is greater than the largest permitted value.

1 8086 The ID parameter is not in the permitted address range

0 8088 LEN parameter is larger than the memory area specified in DATA

1 80A1 Communications error:
¢ The specified connection was not yet established
e The specified connection is currently being terminated. Transmission over

this connection is not possible.

e The interface is being reinitialized.

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

163

Programming instructions

6.2 Extended instructions

ERROR | STATUS Explanation
(W#16#...)
1 80C3 Internal lack of resources:

A block with this ID is already being processed in a different priority class.

1 80C4

Temporary communications error:

e The connection to the communications partner cannot be established at
this time.

e The interface is receiving new parameters or the connection is currently
being established.

Condition codes for TRCV

6.2.4.2

164

ERROR | STATUS Explanation

(W#16#...)

0 0000 New data accepted: The current length of the received data is shown in
RCVD_LEN.
0 7000 Block not ready to receive

7001 Block is ready to receive, receive job was activated.

7002 Follow-on call, receive job being processed: Data is written to the receive
area during this processing For this reason, an error could result in
inconsistent data in the receive area.

1 8085 The LEN parameter is greater than the largest permitted value, or you
changed the LEN or DATA parameter since the first call.

8086 The ID parameter is not in the permitted address range

0 8088 Receive area is too small: The -Value LEN is greater than the receive area
specified by DATA.
1 80A1 Communications error:
e The specified connection has not yet been established
e The specified connection is currently being terminated. A receive job over
this connection is not possible.
e The interface is receiving new parameters.
1 80C3 Internal lack of resources: A block with this ID is already being processed in a
different priority class.
1 80C4 Temporary communications error:
e The connection to the partner cannot be established at the moment.
e The interface is receiving new parameter settings or the connection is
currently being established.

Point-to-Point instructions

The Point-to-Point (PtP) chapter (Page 239) provides detailed information about the PtP
instructions and the communication modules.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

6.2.5 Interrupt instructions

6.2.5.1 Attach and detach instructions

You can activate and deactivate interrupt event-driven subprograms with the ATTACH and
DETACH instructions.

e ATTACH enables interrupt OB subprogram execution for a hardware interrupt event.

® DETACH disables interrupt OB subprogram execution for a hardware interrupt event.

LAD
ATTACH |
=EN END =
OB_NR RET_VAL |
{EVENT
= ADD
T 7T E—
=EN END =
{DE_MH RET_WAL
{EVENT
Parameter Parameter Data type | Description
type
OB_NR IN INT Organization block identifier:

Select from the available hardware interrupt OBs
that were created using the "Add new block" feature.
Double-click on the parameter field, then click on the
helper icon to see the available OBs.

EVENT IN DWORD Event identifier:

Select from the available hardware interrupt events
that were enabled in PLC device configuration for
digital inputs or high-speed counters. Double-click

on the parameter field, then click on the helper icon
to see the available events.

ADD IN BOOL ADD = 0 (default): This event replaces all previous
(ATTACH only) event attachments for this OB.

ADD = 1: This event is added to previous event
attachments for this OB.

RET_VAL ouT INT Execution condition code

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 165

Programming instructions

6.2 Extended instructions

S7-1200 hardware interrupt events
The following hardware interrupt events are supported by the S7-1200:

Rising edge events (all built-in CPU digital inputs plus 2 signal card digital inputs)

— Avrrising edge occurs when the digital input transitions from OFF to ON as a response
to a change in the signal from a field device connected to the input.

Falling edge events (all built-in CPU digital inputs plus 2 signal card digital inputs)
— Afalling edge occurs when the digital input transitions from ON to OFF.

High-speed counter (HSC) current value = reference value (CV = RV) events (HSC 1
through 6)

— A CV =RVinterrupt for a HSC is generated when the current count transitions from an
adjacent value to the value that exactly matches a reference value that was previously
established.

HSC direction changed events (HSC 1 through 6)

— A direction changed event occurs when the HSC is detected to change from
increasing to decreasing, or from decreasing to increasing.

HSC external reset events (HSC 1 through 6)

— Certain HSC modes allow the assignment of a digital input as an external reset that is
used to reset the HSC count value to zero. An external reset event occurs for such a
HSC, when this input transitions from OFF to ON.

Enabling hardware interrupt events in the PLC device configuration

Hardware interrupts must be enabled during the PLC device configuration. You must check
the enable-event box in the device configuration for a digital input channel or a HSC, if you
want to attach this event during configuration or run time.

Check box options within the PLC device configuration:

166

Digital input

— Enabile rising edge detection

— Enable falling edge detection

High-speed counter (HSC)

— Enable this high-speed counter for use

— Generate interrupt for counter value equals reference value count
— Generate interrupt for external reset event

— Generate interrupt for direction change event

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions
6.2 Extended instructions

Adding new hardware interrupt OB code blocks to your program

By default, no OB is attached to an event when the event is first enabled. This is indicated by
the "HW interrupt:" device configuration "<not connected>" label. Only hardware-interrupt
OBs can be attached to a hardware interrupt event. All existing hardware-interrupt OBs
appear in the "HW interrupt:" drop-down list. If no OB is listed, then you must create an OB
of type "Hardware interrupt" as follows. Under the project tree "Program blocks" branch:

1. Double-click "Add new block", select "Organization block (OB)" and choose "Hardware
interrupt”.

2. Optionally, you can rename the OB, select the programming language (LAD or FBD), and
select the block number (switch to manual and choose a different block number than that
suggested).

3. Edit the OB and add the programmed reaction that you want to execute when the event
occurs. You can call FCs and FBs from this OB, to a nesting depth of four.

OB_NR parameter

All existing hardware-interrupt OB names appear in the device configuration "HW interrupt:"
drop-down list and in the ATTACH / DETACH parameter OB_NR drop-list.

EVENT parameter

When a hardware interrupt event is enabled, a unique default event name is assigned to this
particular event. You can change this event name by editing the "Event name:" edit box, but
it must be a unique name. These event names become tag names in the "Constants" tag
table, and appear on the EVENT parameter drop-down list for the ATTACH and DETACH
instruction boxes. The value of the tag is an internal number used to identify the event.

General operation

Each hardware event can be attached to a hardware-interrupt OB which will be queued for
execution when the hardware interrupt event occurs. The OB-event attachment can occur at
configuration time or at run time.

You have the option to attach or detach an OB to an enabled event at configuration time. To
attach an OB to an event at configuration time, you must use the "HW interrupt:" drop-down
list (click on the down arrow on the right) and select an OB from the list of available
hardware-interrupt OBs. Select the appropriate OB name from this list, or select "<not
connected>" to remove the attachment.

You can also attach or detach an enabled hardware interrupt event during run time. Use the
ATTACH or DETACH program instructions during run time (multiple times if you wish) to
attach or detach an enabled interrupt event to the appropriate OB. If no OB is currently
attached (either from a "<not connected>" selection in device configuration, or as a result of
executing a DETACH instruction), the enabled hardware interrupt event is ignored.

DETACH operation

Use the DETACH instruction to detach either a particular event or all events from a particular
OB. If an EVENT is specified, then only this one event is detached from the specified
OB_NR; any other events currently attached to this OB_NR will remain attached. If no
EVENT is specified, then all events currently attached to OB_NR will be detached.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 167

Programming instructions

6.2 Extended instructions

Condition codes

6.2.5.2

RET_VAL ENO status | Description

(W#16#....)

0000 1 No error

0001 0 Nothing to Detach (DETACH only)
8090 0 OB does not exist

8091 0 OB is wrong type

8093 0 Event does not exist

Start and cancel time delay interrupt instructions

You can start and cancel time delay interrupt processing with the SRT_DINT and CAN_DINT
instructions. Each time delay interrupt is a one-time event that occurs after the specified
delay time. If the time delay event is cancelled before the time delay expires, the program
interrupt does not occur.

e SRT_DINT starts a time delay interrupt that executes an OB (organization block)
subprogram when the delay time specified by parameter DTIME has elapsed.

® CAN_DINT cancels a time delay interrupt that has already started. The time delay
interrupt OB is not executed in this case.

LAD FBD
"""""""" SAT_DINT | SRT_DINT

-EH END - —|EN
0B_MR RET_WAL 0B_MR
DTIME DTIME RET_vaL
SIGM SIGH ENO =

CAN_DINT CAN_DINT

= EN ENO = =EMN RET WAL

DE_MRA RET_WAL | | OB_MR END =

SRT_DINT parameters

168

Parameter | Parameter | Data type Description
type

OB_NR IN INT Organization block (OB) to be started after a time-delay:
Select from the available time-delay interrupt OBs that were
created using the "Add new block" project tree feature.
Double-click on the parameter field, then click on the helper
icon to see the available OBs.

DTIME IN TIME Time delay value (1 to 60000 ms)
You can create longer delay times, for example, by using a
counter inside a time delay interrupt OB.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.2 Extended instructions

Parameter | Parameter | Data type Description

type
SIGN IN WORD Not used by the S7-1200; any value is accepted
RET_VAL |OUT INT Execution condition code

CAN_DINT parameters

Parameter | Parameter | Data type Description
type
OB_NR IN INT Time delay interrupt OB identifier. You can use an OB
number or symbolic name.
RET_VAL |OUT INT Execution condition code

Operation

The SRT_DINT instruction specifies a time delay, starts the internal time delay timer, and
associates a time delay interrupt OB subprogram with the time delay timeout event. When
the specified time delay has elapsed, a program interrupt is generated that triggers the
execution of the associated time delay interrupt OB. You can cancel an in-process time
delay interrupt before the specified time delay occurs by executing the CAN_DINT
instruction. The total number of active time delay and time cyclic interrupt events must not
exceed four.

Adding time delay interrupt OB subprograms to your project

Only time delay interrupt OBs can be assigned to the SRT_DINT and CAN_DINT
instructions. No time delay interrupt OB exists in a new project. You must add time delay
interrupt OBs to your project. To create a time-delay interrupt OB, follow these steps:

1. Double-click the "Add new block" item in the "Program blocks" branch of the project tree,
select "Organization block (OB)", and choose "Time delay interrupt".

2. You have the option to rename the OB, select the programming language, or select the
block number. Switch to manual numbering if you want to assign a different block number
than the number that was assigned automatically.

3. Edit the time delay interrupt OB subprogram and create programmed reaction that you
want to execute when the time delay timeout event occurs. You can call other FC and FB
code blocks from the time delay interrupt OB, with a maximum nesting depth of four.

4. The newly assigned time delay interrupt OB names will be available when you edit the
OB_NR parameter of the SRT_DINT and CAN_DINT instructions.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 169

Programming instructions

6.2 Extended instructions

Condition codes

6.2.5.3

Parameter

Operation

170

RET_VAL Description

(W#16#...)

0000 No error occurred

8090 Incorrect parameter OB_NR

8091 Incorrect parameter DTIME

80A0 Time delay interrupt has not started

Disable and Enable alarm interrupt instructions

Use the DIS_AIRT and EN_AIRT instructions to disable and enable alarm interrupt
processing.

LAD

| DIS_AIRT |
=EMN END =
RET_VAL |

EN_AIRT
—EHN END -
RET_VAL |

Parameter Parameter Data type Description
type
RET_VAL ouT INT Number of delays = number of DIS_AIRT executions in
the queue.

DIS_AIRT delays the processing of new interrupt events. You can execute DIS_AIRT more
than once in an OB. The DIS_AIRT executions are counted by the operating system. Each of
these remains in effect until it is cancelled again specifically by an EN_AIRT instruction, or
until the current OB has been completely processed.

Once they are enabled again, the interrupts that occurred while DIS_AIRT was in effect are
processed, or the interrupts are processed as soon as the current OB has been executed.

EN_AIRT enables the processing of interrupt events that you previously disabled with the
DIS_AIRT instruction. Each DIS_AIRT execution must be cancelled by an EN_AIRT
execution. If, for example, you have disabled interrupts five times with five DIS_AIRT
executions, you must cancel these with five EN_AIRT executions. The EN_AIRT executions
must occur within the same OB, or any FC or FB called from the same OB, before interrupts
are enabled again for this OB.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions
6.2 Extended instructions

Parameter RET_VAL indicates the number of times that interrupt processing was disabled,
which is the number of queued DIS_AIRT executions. Interrupt processing is only enabled
again when parameter RET_VAL = 0.

6.2.6 PID control

The "PID_Compact" statement makes a PID controller with DE
"D _Compa_

optimizing self tuning for automatic and manual mode 08"

aval.lable. . . . T e
For information about the PID_Compact instruction, refer = .l

to the online help of the TIA portal. Setpoint Dutput

Input Qusput_PER
Input_PER Drutpast_Pa Ly

- Exvor
PID_Compact instruction

6.2.7 Motion control instructions

The motion control instructions use an associated technology data block and the dedicated
PTO (pulse train outputs) of the CPU to control the motion on an axis. For information about
the motion control instructions, refer to the online help of the TIA portal.

-chgﬁﬂl_ "MC_Feset_DB"
i . MC_Resel” 55| =
W Powel” (71 =
e —EN ENO -
—EN END - s Busy e
Aua Busy 1+ EncdD |
| Shophdoda Errcell} | Elmtm‘ni
1 Enosinfo | L = 4
MC_Power enables and MC_Reset resets all motion

disables a motion control axis. control errors. All motion
control errors that can be
acknowledged are
acknowledged.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 171

Programming instructions

6.2 Extended instructions

6.2.8

6.2.8.1

172

'Mtﬁg o _ "MC_Hal_DB™ 'HE_HE-:-«PJ&;_
MC_Home® |1 [l ™
EE EN é%l ot El
—-EN END — Aot B —EN END —
| Buas Buzy | | B B
| Mode I Cormmanddiboet | * ol
Commandibort ed Commandabat
edn EncelD | ed~
Email D ¢ Encdrio| EmodD
Enreslrifo - . Emculrdo -

-

MC_Home establishes the
relationship between the axis
control program and the axis

mechanical positioning system.

MC_Halt cancels all motion
processes and causes the
axis motion to stop. The

stop position is not defined.

-

MC_MovedJog executes jog
mode for testing and startup
purposes.

"MC_ ML "WC
Muremdhaobite_ MirveRt el M orvaedocily_
OB DE" DE"
AT i 7~ I B 21
—EN END | =EN END = —EN END |-
| sz Busy 4 Aoy Bu!jl = | s Busy 4
CommandAbord Command?bort { Divection Commandbor
e - ad = | o ey
Erecelr Encdly EncdDr
- Emoilnio . Errorinfo | - Emoilinfio

MC_MoveAbsolute starts

motion to an absolute position.
The job ends when the target

position is reached.

Pulse instruction

CTRL_PWM instruction

MC_MoveRelative starts a
positioning motion relative
to the start position.

MC_MoveVelocity causes
the axis to travel with the
specified speed.

The CTRL_PWM Pulse Width Modulation (PWM) L 9 -

instruction provides a fixed cycle time output with a

variable duty cycle. The PWM output runs J ® u ® L
continuously after being started at the specified -
frequency (cycle time). The pulse width is varied as @® Cycle time

required to effect the desired control. ® Pulse width time

Duty cycle can be expressed as a percentage of the cycle time (0 — 100%), as thousandths
(0 —1000), as ten thousandths (0 — 10000), or as S7 analog format. The pulse width can
vary from 0 (no pulse, always off) to full scale (no pulse, always on).

Since the PWM output can be varied from 0 to full scale, it provides a digital output that in
many ways is the same as an analog output. For example, the PWM output can be used to

S7-1200 Programmable controller

System Manual, 04/2009, A5E02486680-01

Programming instructions

6.2 Extended instructions

control the speed of a motor from stop to full speed, or it can be used to control position of a
valve from closed to fully opened.

Two pulse generators are available for controlling high-speed pulse output functions: PWM
and Pulse train output (PTO). PTO is used by the motion control instructions. You can assign
each pulse generator to either PWM or PTO, but not both at the same time.

The two pulse generators are mapped to specific digital outputs as shown in the following
table. You can use onboard CPU outputs, or you can use the optional signal board outputs.
The output point numbers are shown in the following table (assuming the default output
configuration). If you have changed the output point numbering, then the output point
numbers will be those you assigned. Regardless, PTO1/PWM1 uses the first two digital
outputs, and PTO2/PWM2 uses the next two digital outputs, either on the CPU or on the
attached signal board. Note that PWM requires only one output, while PTO can optionally
use two outputs per channel. If an output is not required for a pulse function, it is available
for other uses.

Description Default output assignment
Pulse Direction
PTO 1 Onboard CPU Q0.0 Q0.1
Signal board Q4.0 Q4.1
PWM 1 Onboard CPU Q0.0 -
Signal board Q4.0 --
PTO 2 Onboard CPU Q0.2 Q0.3
Signal board Q4.2 Q4.3
PWM 2 Onboard CPU Q0.2 --
Signal board Q4.2 -

Configuring a pulse channel for PWM

To prepare for PWM operation, first configure a pulse channel in the device configuration by
selecting the CPU, then Pulse Generator (PTO/PWM), and choose either PWM1 or PWM2.
Enable the pulse generator (check box). If a pulse generator is enabled, a unique default
name is assigned to this particular pulse generator. You can change this name by editing it
in the "Name:" edit box, but it must be a unique name. Names of enabled pulse generators
will become tags in the "constant" tag table, and will be available for use as the PWM
parameter of the CTRL_PWM instruction. You have the option to rename the pulse
generator, add a comment, and assign parameters as follows:

PWM pulse options
® Pulse generator used as follows: PWM or PTO (choose PWM)
® Qutput source: onboard CPU or Signal Board

® Time base: milliseconds or microseconds

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 173

Programming instructions

6.2 Extended instructions

e Pulse width format:

Percent (0 — 100)
Thousandths (0 — 1000)
Ten-thousandths (0 — 10000)
S7 analog format (0 — 27648)

® Cycle time: Enter your cycle time value. This value can only be changed here.

e |nitial pulse width: Enter your initial pulse width value. The pulse width value can be

changed during runtime.

Output addresses

Start address: Enter the Q word address where you want to locate the pulse width value.
The default location is QW1000 for PWM1, and QW1002 for PWM2. The value at this
location controls the width of the pulse and is initialized to the "Initial pulse width:" value
specified above each time the PLC transitions from STOP to RUN mode. You change this Q-
word value during run time to cause a change in the pulse width.

Operation

174

LAD FBD
"CTAL_PwM TTRL_PWM_
o]]
CTAL_PwM | CTRL_PWM
—EN ENO - —EN BUSY =
{ P BUSY 1 P STATUS
-_EI'ME]LE STATL!S_ — EMABLE END =
Parameter Parameter | Data Initial value | Description
type type
PWM IN WORD |0 PWM identifier:
Names of enabled pulse generators will
become tags in the "constant" tag table, and
will be available for use as the PWM
parameter.
ENABLE IN BOOL 1=start pulse generator
0 = stop pulse generator
BUSY ouT BOOL 0 Function busy
STATUS ouT WORD |0 Execution condition code

A data block (DB) is used by the CTRL_PWM instruction to store parameter information.
When placing a CTRL_PWM instruction into the program editor, a DB will be assigned. The
data block parameters are not separately changed by the user, but are controlled by the
CTRL_PWM instruction.

Specify the enabled pulse generator to use, by using its tag name for the PWM parameter.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

Condition codes

6.3 Global library instructions

When the EN input is TRUE, the PWM_CTRL instruction starts or stops the identified PWM
based on the value at the ENABLE input. Pulse width is specified by the value in the
associated Q word output address.

Because the S7-1200 processes the request when the CTRL_PWM instruction is executed,
parameter BUSY will always report FALSE on S7-1200 CPU models.

If an error is detected, then ENO is set to FALSE, and parameter STATUS contains a
condition code.

The pulse width will be set to the initial value configured in device configuration when the
PLC first enters the RUN mode. You write values to the Q-word location specified in device
configuration ("Output addresses" / "Start address:") as needed to change the pulse width.
You use an instruction such as a move, convert, math, or PID box to write the desired pulse
width to the appropriate Q word. You must use the valid range for the Q-word value (percent,
thousandths, ten-thousandths, or S7 analog format).

STATUS value Description
0 No error
80A1 PWM identifier does not address a valid PWM

6.3 Global library instructions

6.3.1 USS

The USS Protocol library makes controlling Siemens drives which support USS protocol. The
instructions include functions that are specifically designed for using the USS protocol to
communicate with the drive. The CM1241RS485 module communicates with the drives on
RS485 ports. You can control the physical drive and the read/write drive parameters with the
USS library.

6.3.1.1 Requirements for using the USS protocol

The library provides 1 Function Block and 3 Function Calls to support the USS protocol.
Each CM1241RS485 communications module supports a maximum of 16 drives.

A single Instance Data Block contains temporary storage and buffers for all drives on the
USS network connected to each PtP communication module you install. The USS functions
for these drives share the information in this data block.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 175

Programming instructions

6.3 Global library instructions

176

USS_PORT
The USS_DRV_DB data block is a
buffer that you only access

USS_DRV_DB —| USS_DB

indirectly via the USS instructions.
USS_DRV_DB
Rerserved for
PTP
COM data
50 bytes
1
Drive 2 data
3
USS_DRV_DB
4 CM1241RS485
USS_DRV 5
6 The communications
7 module supports up to
» | orive 3 16 drives. Use 1 to 16
- 5 as the Drive parameter
box input.
10
1
12
13 Drive 2
USS_RPM
- " Drive 1
2 —|DRIVE 15
16
USS_WPM Q
2 —| DRIVE

The USS_PORT function handles actual communication between the CPU and the drives via
the PtP communication module. Each call to this function handles at most one
communication with one drive. Your program must call this function fast enough to prevent a

communication timeout, by the drives. You may call this function in the Main or any interrupt
OB.

The USS_DRYV function block provides your program access to a specified drive on the USS
network. Its inputs and outputs are the status and controls for the drive. If there are 16 drives
on the network, your program must have at least 16 USS_DRYV calls, one for each drive.

These blocks should be called at the rate that is required to control the functions of the drive.

You may only call the USS_DRYV function block from the main OB.

A\ cauTtion

Only call USS_DRYV, USS_RPM, USS_WPM from the Main OB. The USS_PORT function
can be called from any OB, usually from a Time delay interrupt.

Failure to prevent interruption of USS_PORT may produce unexpected errors.

The USS_RPM and USS_WPM functions read and write the remote drive operating
parameters. These parameters control the internal operation of the drive. See the drive
manual for the definition of these parameters. Your program can contain as many of these
functions as necessary, but only one read or write request can be active per drive, at any
given time. You may only call the USS_RPM and USS_WPM functions from a Main OB.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.3 Global library instructions

Calculating the time required for communicating with the drive

6.3.1.2

Communications with the drive are asynchronous to the S7-1200 scan. The S7-1200
typically completes several scans before one drive communications transaction is
completed.

The USS_PORT interval is the time required for one drive transaction. The table below
shows the minimum USS_PORT interval for each baud rate. Calling the USS_PORT function
more frequently than the USS_PORT interval will not increase the number of transactions.
The drive timeout interval is the amount of time that might be taken for a transaction, if
communications errors caused 3 tries to complete the transaction. By default, the USS
protocol library automatically does up to 2 retries on each transaction.

Baud rate Calculated minimum USS_PORT call Drive message interval timeout per
Interval (milliseconds) drive (milliseconds)

1200 790 2370

2400 405 1215

4800 212.5 638

9600 116.3 349

19200 68.2 205

38400 441 133

57600 36.1 109

115200 28.1 85

USS_DRYV instruction

The USS_DRYV instruction exchanges data with the drive, by creating request messages and
interpreting the drive response messages. A separate function block should be used for each
drive, but all USS functions associated with one USS network and PtP communication
module must use the same Instance Data Block. You must create the DB name when you
place the first USS_DRYV instruction and you reuse that DB that was created by the initial
instruction usage.

When the initial USS_DRYV execution is made, the drive indicated by the USS address
(parameter DRIVE) is initialized in the Instance DB. After this initialization, subsequent
executions of USS_PORT can then begin communication to the drive, at this drive number.

Changing the Drive number requires a PLC stop to run mode transition that initializes the
Instance DB. Input parameters are configured into the USS TX message buffer and outputs
are read from a "previous" valid response buffer if any exists. There is no data transmission
during USS_DRYV execution. Drives are communicated with when USS_PORT is executed.
USS_DRYV only configures the messages to be sent and interprets data that might have been
received from a previous request.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 177

Programming instructions

6.3 Global library instructions

LAD (default view) LAD (expanded view)

"WSS_DRY_DE™ “J55_DRY_DE" Expand the box to reveal all
USS_DAv | [S5 DAV] the parameters by clicking

-EN b = - END = the bottom of the box.
= RUM HDF = ={ALN MDR
- OFF2 ERAOR = - OFF2 ERROR =

- OFF3 STATUS | -fgf:gk STATUS' The parameter pins that are

= F_ALK, IMHIBIT 4 - 4 .

Jor cant s Jom L grayed are optlona.I and do
| DRIVE SPEED | | DRIVE INHIBIT b+ not need to be assigned.
{SPEED_SP _ | FALILT 4

|SPEED_SP SPEED |

Parameter Parameter | Data type Description

type
RUN IN BOOL Drive start bit: When true, this input enables the drive to
run at the preset speed.
OFF2 IN BOOL Electrical stop bit: When true, this bit cause the drive to
coast to a stop with no braking.
OFF3 IN BOOL Fast stop bit — When true this bit causes a fast stop by

causing braking the drive rather than just allowing the
drive to coast to a stop.

F_ACK IN BOOL Fault acknowledge bit — This bit is set to reset the fault
bit on a drive. This bit is set after the fault is cleared to
indicate to the drive it no longer needs to indicate the
previous fault.

DIR IN BOOL Drive direction control — This bit is set to indicate that the
direction is forward (for positive SPEED_SP).

DRIVE IN USINT Drive address: This input is the address of the USS
drive. The valid range is drive 1 to drive 16.

PZD_LEN IN USINT Word length — This is the number of words of PZD data.
The valid values are 2, 4, 6, or 8 words. Default is 2.

SPEED_SP |IN REAL Speed set point — This is the speed of the drive as a

percentage of configured frequency. A positive value
specifies forward direction (when DIR is true).

CTRL3 IN UINT Control word 3 — A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive. Optional parameter.

CTRL4 IN UINT Control word 4 — A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive. Optional parameter.

CTRL5 IN UINT Control word 5 — A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive. Optional parameter.

S7-1200 Programmable controller
178 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.3 Global library instructions

Parameter Parameter | Data type Description

type

CTRL6 IN UINT Control word 6 — A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive.

CTRL7 IN UINT Control word 7 — A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive. Optional parameter.

CTRLS8 IN UINT Control word 8 — A value written to a user-configurable
parameter on the drive. The user must configure this on
the drive. Optional parameter.

NDR ouT BOOL New data ready — When true the bit indicates that the
outputs contain data from a new communication request.

ERROR ouT BOOL Error occurred — When true, this pin indicates that an
error has occurred and the STATUS output is valid. All
other outputs are set to zero on an error.

STATUS ouT UINT The status value of the request. It indicates the result of
the scan. (Drive status word 2)

RUN_EN ouT BOOL Run enabled — This bit indicates whether the drive is
running.

D_DIR ouT BOOL Drive direction — This bit indicates whether the drive is
running forward.

INHIBIT ouT BOOL Drive inhibited — This bit indicates the state of the inhibit
bit on the drive.

FAULT ouT BOOL Drive fault — This bit indicates that the drive has
registered a fault. The user must fix the problem and
then set the F_ACK bit to clear this bit when set.

SPEED ouT REAL Drive Current Speed — The value of the speed of the
drive as a percentage of configured speed.

STATUS1 ouT UINT Drive Status Word 1 — This value contains fixed status
bits of a drive.

STATUS3 ouT UINT Drive Status Word 3 — This value contains a user-
configurable status word on the drive.

STATUS4 ouT UINT Drive Status Word 4 — This value contains a user-
configurable status word on the drive.

STATUSS ouT UINT Drive Status Word 5 — This value contains a user-
configurable status word on the drive.

STATUS6 ouT UINT Drive Status Word 6 — This value contains a user-
configurable status word on the drive.

STATUS7 ouT UINT Drive Status Word 7 — This value contains a user-
configurable status word on the drive.

STATUSS ouT UINT Drive Status Word 8 — This value contains a user-
configurable status word on the drive.

6.3.1.3 USS_PORT instruction

The USS_PORT instruction handles communication over the USS network. Typically there is
only one USS_PORT function per PtP communication module in the program, and each call

of this function handles a transmission to or from a single drive. Your program must execute

the USS_PORT function often enough to prevent drive timeouts. All USS functions

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

179

Programming instructions

6.3 Global library instructions

6.3.1.4

180

associated with one USS network and PtP communication module must use the same
Instance Data Block. USS_PORT is usually called from a time delay interrupt OB to prevent
drive timeouts and keep the most recent USS data updates available for USS_DRYV calls.

LAD FBD
i USS_POAT i ' RS
{EN EMop —EM
{PORT ERROR H PORT ERRORA —
| BALID STATUS BALID STATUS &
|u55 0E {US5_0B END -
Parameter | Parameter | Data type Description
type
PORT IN PORT PtP communications module. Identifier:
This a constant which can be referenced within the
"Constants" tab of the default tag table.
BAUD IN DINT The Baud Rate to be used for USS communication.
USS_DB IN DINT This is a reference to the instance DB that is created and
initialized when a USS_DRYV instruction is placed in your
program.
ERROR ouT BOOL When true, this pin indicates that an error has occurred and
the STATUS output is valid.
STATUS ouT UINT The status value of the request. It indicates the result of the
scan or initialization.

USS_RPM instruction

The USS_RPM instruction reads a parameter from the drive. All USS functions associated
with one USS network and PtP communication module must use the same data block.
USS_RPM must be called from the main OB.

LAD
| USS_FAFW
=EN ENO —
- REQ DOME M
{ DRME ERAOR H
| PARAM STATUS |
{INDE
{WALUE
{uss_oe

FBD

—EH

— REQ
{ DRVE
{ PARAM
1 INDEX
{VALLIE

{Us5_DB

DOME =
ERRDR =
STATUS |

END =

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.3 Global library instructions

Parameter

Parameter

type

Data type

Description

REQ

IN

BOOL

Send request: When true, it indicates that a new read
request is desired. This is ignored if the request for this
parameter is already pending.

DRIVE

USINT

Drive address: This input is the address of the USS drive.
The valid range is drive 1 to drive 16.

PARAM

UINT

Parameter number: This input designates which drive
parameter is written. The range of this parameter is 0 to
2047. See your drive manual for details on how to access
any parameters above this range.

INDEX

UINT

Parameter index: This input designates which Drive
Parameter index is to be written. A 16-bit value where the
Least Significant Byte is the actual index value with a range
of (0 to 255). The Most Significant Byte may also be used
by the drive and is drive specific. See your drive manual for
details.

USS_DB

VARIANT

This is a reference to the instance DB that is created and
initialized when a USS_DRYV instruction is placed in your
program.

VALUE

WORD,
INT, UINT,
DWORD,
DINT,
UDINT,
REAL

This is the value of the parameter that was read and is valid
only when the DONE bit is true.

DONE

ouT

BOOL

Done: When TRUE indicates that the VALUE output holds
the previously requested read parameter value.

This bit is set when USS_DRYV sees the read response data
from the drive.

This bit is reset when either:

e you request the response data via another USS_RPM
poll

Or
e On the second of the next two calls to USS_DRV

ERROR

ouT

BOOL

Error occurred — When true, this indicates that an error has
occurred and the STATUS output is valid. All other outputs
are set to zero on an error.

STATUS

ouT

UINT

This is the status value of the request. It indicates the result
of the read request.

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

181

Programming instructions

6.3 Global library instructions

6.3.1.5 USS_WPM instruction

The USS_WPM instruction modifies a parameter in the drive. All USS functions associated
with one USS network and PtP communication module must use the same data block.
USS_WPM must be called from the main OB.

Note

EEPROM write operations

Beware of overusing the EEPROM permanent write operation. Minimize the number of
EEPROM write operations to extend the EEPROM life.

LAD FBD
i USS_ WM | USS_ WA
—EN END= =EN
- REQ DOME » —RED
DRIE ERROR - { DRIVE
| PARAM STATUS | { PAFLAM
IHDE {INDE, DOME =
= EEFROM = EEFRIOM ERRORA =
I WALILIE | VALLE STATUS
Uss_DE | LF55_D& END (=

Parameter | Parameter | Data type Description

type

REQ IN BOOL Send request: When true, it indicates that a new write
request is desired. This is ignored if the request for this
parameter is already pending.

DRIVE IN USINT Drive address: This input is the address of the USS drive.
The valid range is drive 1 to drive 16.

PARAM IN UINT Parameter number: This input designates which drive
parameter is written. The range of this parameter is 0 to
2047. See your drive manual for details on how to access
any parameters above this range.

INDEX IN UINT Parameter index: This input designates which Drive
Parameter index is to be written. A 16-bit value where the
Least Significant Byte is the actual index value with a range
of (0 to 255). The Most Significant Byte may also be used
by the drive and is drive specific. See your drive manual for
details.

EEPROM |IN BOOL Store To Drive EEPROM: When true, writes to the drive
parameter will be stored in the drive EEPROM. If false, the
write is temporary and will not be retained if drive is power
cycled.

VALUE IN WORD, The value of the parameter that is to be written. It must be

INT, UINT, |valid on the transition of REQ.
DWORD,

DINT,

UDINT,

REAL

182

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.3 Global library instructions

Parameter | Parameter | Data type Description

type
USS_DB IN VARIANT This is a reference to the instance DB that is created and
initialized when a USS_DRYV instruction is placed in your
program.
DONE ouT BOOL Done: When TRUE indicates that the input VALUE has

been written to the drive.

This bit is set when USS_DRYV sees the write response data
from the drive.

This bit is reset when either:

You request the drive's confirmation that the write is

complete via another USS_WPM poll or on the second of
the next two calls to USS_DRV.

ERROR ouT BOOL Error occurred: When true, this indicates that an error has
occurred and the STATUS output is valid. All other outputs
are set to zero on an error.

STATUS ouT UINT This is the status value of the request. It indicates the result
of the write request.

6.3.1.6 USS status codes

USS instruction status codes are returned at the STATUS output of the USS functions.

STATUS value | Description

(W#16#....)

0000 No error

8180 The length of the drive response did not match the characters received from the drive

8181 VALUE parameter was not a Word, Real or DWord data type

8182 User supplied a Word for a parameter value and received a DWord or Real from the drive in the
response

8183 User supplied a DWord or Real for a parameter value and received a Word from the drive in the
response

8184 Response telegram from drive had a bad checksum

8185 lllegal drive address (valid drive address range: 1-16)

8186 Speed set point out of valid range (valid speed SP range: -200% to 200%)

8187 Wrong drive number responded to the request sent

8188 lllegal PZD word length specified (valid range = 2, 4, 6 or 8 words)

8189 lllegal Baud Rate was specified

818A Parameter request channel is in use by another request for this drive

818B Drive has not responded to requests and retries

818C Drive returned an extended error on a parameter request operation. See the extended error description
below this table.

818D Drive returned an illegal access error on a Parameter request operation. See your drive manual for

information of why parameter access may be limited

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 183

Programming instructions

6.3 Global library instructions

STATUS value | Description

(Wi16t#....)

818E Drive has not been initialized: This error code is returned to USS_RPM or USS_WPM when USS_DRV
for that drive has not been called at least once. This keeps the initialization of first scan of USS_DRV
from overwriting a pending Parameter Read or Write request since it initializes the Drive as a new entry.
To fix this error, call USS_DRYV for this drive number.

80Ax-80Fx Specific errors returned from PtP (Point-to-Point) communication FBs called by the USS Library: These

error code values are not modified by the USS library and are defined in the PtP instruction descriptions.

USS drive extended error codes

6.3.2

6.3.2.1

Description

184

USS Drives support read and write access to a drive’s internal parameters. This feature
allows remote control and configuration of the drive. Drive parameter access operations can
fail due to errors like values out of range or illegal requests for a drive’s current mode. The
drive generates an error code value that is returned in the "USS_Extended_Error" variable of
the USS_DRYV Instance DB. This error code value is only valid for the last execution of a
USS_RPM or USS_WPM instruction. The drive error code is put into the
"USS_Extended_Error" variable when the STATUS code value is hexadecimal 808C. The
error code value of "USS_Extended_Error" depends on the drive model. See the drive’s
manual for a description of the extended error codes for read and write parameter

operations.

MODBUS

MB_COMM_LOAD

The MB_COMM_LOAD instruction configures a port on the Point-to-Point (PtP) CM 1241
RS485 or CM 1241 RS232 module for Modbus RTU protocol communications.

LAD

"MEB_COMM_
LOsD_DB™

[“ME_COMM_LOAD™

—EN
PORT
BAUD
PARITY
FLOW_CTRL
RTS_OMN_DLY
ATS_0FF_DLY
RESF_TO
|MB_DB

END ==
ERROR M
STATUS |

{RESP_TO _
{ ME_DE END

FBD

"WEB_COMM_
LOAD _DE"

“MB_CIiMM_LIOAD™

—EMN
| FORT
| BALID
| PARITY
| FLOW _CTRL
|RTS_DN_DLY

ATS_QFF_DL
1

ERROR
STATUS |

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.3 Global library instructions

Parameter Parameter Data type Description
type
PORT IN UINT Communications port identifier:
After you install the CM module in the Device configuration, the port
identifier appears in the helper drop-list available at the PORT box
connection. This constant can also be referenced within the "Constants"
tab of the default tag table.
BAUD IN UDINT Baud Rate Selection:
300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115200
All other values are invalid
PARITY IN UINT Parity selection:
e 0-None
— Transmit: and receive: 1 start bit, 8 data bits, no parity 1 stop bit
e 1-0dd
e 2-Even
FLOW_CTRL IN UINT Flow control selection:
e 0 - (default) No Flow Control
e 1 -Hardware Flow control with RTS always ON (does not apply to
RS485 ports)
e 2 - Hardware Flow control with RTS switched
RTS_ON_DLY IN UINT RTS ON Delay Selection:
e 0 - (default) No delay from RTS active until the first character of the
message is transmitted
e 11065535 - Delay in milliseconds from RTS active until the first
character of the message is transmitted (does not apply to RS-485
ports). RTS delays shall be applied independent of the FLOW_CTRL
selection.
RTS_OFF_DLY [IN UINT RTS OFF Delay Selection:
e 0 - (default) No delay from the last character transmitted until RTS
goes inactive
e 1to0 65535 - Delay in milliseconds from the last character transmitted
until RTS goes inactive (does not apply to RS-485 ports). RTS delays
shall be applied independent of the FLOW_CTRL selection.
RESP_TO IN UINT Response Timeout:
Time in milliseconds allowed by MB_MASTER for the slave to respond. If
the slave does not respond in this time period, MB_MASTER will retry the
request or terminate the request with an error, if the specified number of
retries has been sent.
5 ms to 65535 ms (default value = 1000ms).
MB_DB IN VARIANT | A reference to the Instance Data Block used by the MB_MASTER or

MB_SLAVE instructions. After MB_SLAVE or MB_MASTER is placed in
your program, the DB identifier appears in the helper drop-list available at
the MB_DB box connection.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

185

Programming instructions

6.3 Global library instructions

Parameter Parameter Data type Description
type
ERROR ouT BOOL Error:
e 0 - No error detected
e 1 - Indicates that an error was detected and the error code at
parameter STATUS is valid
STATUS ouT WORD Port configuration error code

Modbus communication rules

Operation

186

MB_COMM_LOAD must be executed to configure a port before either a MB_SLAVE or a
MB_MASTER instruction can communicate with that port.

If a port is to respond as a slave to a Modbus master, then that port cannot be used by
MB_MASTER. Only one instance of MB_SLAVE execution can be used with a given port.

If a port is to be used to initiate Modbus master requests, that port cannot be used by
MB_SLAVE . One or more instances of MB_MASTER execution can be used with that
port.

The Modbus instructions do not use communication interrupt events to control the
communication process. Your program must poll the MB_MASTER or MB_SLAVE
instructions for transmit and receive complete conditions.

If your program operates a Modbus slave, then MB_SLAVE must poll (execute
periodically) at a rate that allows it to make a timely response to incoming requests from a
Modbus master.

Call all MB_SLAVE executions from a cyclic interrupt OB.

If your program operates a Modbus master and uses MB_MASTER to send a request to
a slave, then you must continue to poll (execute MB_MASTER) until the response from
the slave is returned.

Call all MB_MASTER execution for a given port from the same OB (or OB priority level).

MB_COMM_LOAD is executed to configure a port for the Modbus RTU protocol. After the
port is configured, you communicate on the Modbus by executing either MB_SLAVE or
MB_MASTER instructions.

One instance of the MB_COMM_LOAD must be used to configure each port of each
communication module that is used for Modbus communication. You must assign a unique
MB_COMM_LOAD Instance Data Block for each port that you use. The S7-1200 CPU is
limited to 3 communication modules.

An Instance Data Block is assigned when you place the MB_MASTER or MB_SLAVE
instructions. This Instance Data Block is referenced when you specify the MB_DB parameter
on the MB_COMM_LOAD instruction.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

Condition codes

6.3 Global library instructions

STATUS value Description
(W#16#....)
0000 No error
8180 Invalid port ID value
8181 Invalid baud rate value
8182 Invalid parity value
8183 Invalid flow control value
8184 Invalid response timeout value
8185 Invalid pointer to either the SLAVE_PORT_n or MASTER_PORT_n DB
6.3.2.2 MB_MASTER
Description
The MB_MASTER instruction allows your program to communicate as a Modbus master
using a port on the Point-to-Point (PtP) CM 1241 RS485 or CM 1241 RS232 module. You
can access data in one or more Modbus slave devices.
An Instance Data Block is assigned when you place the MB_MASTER instruction in your
program. This MB_MASTER Instance Data Block name is used when you specify the
MB_DB parameter on the MB_COMM_LOAD instruction.
LAD FBD
"WB_MASTER_ ME_MASTER_
oe" -3
“MB_MASTER" ["ME_MASTER" |
—EM EMO— —EM [
- REQ DOMEN —REQ [
{MB_ADDR BUSY 1 ME_ADDR DONE |-
{MODE ERROR = MODE BUSY =
| DATA_ADDR STATUS | DATA_ADDR ERROR -
| DATA_LEN DATA_LEM STATUS |
{DATA_PTR {DATA_PTR ENOD -
Parameter Parameter Data type Description
type
REQ IN BOOL Request Input:
e 0-Norequest
e 1 -—Request to transmit data to Modbus Slave(s)
MB_ADR IN USINT Modbus RTU station address: Valid address range: 0 to 247
The value of 0 is reserved for broadcasting a message to all Modbus
slaves. Modbus function codes 05, 06, 15 and 16 are the only function
codes supported for broadcast.
MODE IN USINT Mode Selection: Specifies the type of request: read, write, or diagnostic

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

187

Programming instructions

6.3 Global library instructions

Parameter Parameter Data type Description
type

DATA_ADDR IN UDIINT Starting Address in the Slave: Specifies the starting address of the data
to be accessed in the Modbus slave. . See the Modbus operations table
below for valid addresses.

DATA_LEN IN UINT Data Length: Specifies the number of bits or words to be accessed in
this request. See the Modbus operations table below for valid lengths.

DATA_PTR IN VARIANT Data Pointer: Points to the CPU DB address for the data being written
or read. The DB must be a classic DB type. See the DATA_PTR note
below.

NDR ouT BOOL New Data Ready:
e 0 - Transaction not complete
¢ 1 -Indicates that the MB_MASTER instruction has completed the

requested transaction with Modbus slave(s)

BUSY ouT BOOL Busy:
e 0-No MB_MASTER transaction in progress
¢ 1-MB_MASTER transaction in progress

ERROR ouT BOOL Error:
e 0 - No error detected
e 1 —Indicates that an error was detected and the error code supplied

at parameter STATUS is valid
STATUS ouT WORD Execution condition code

Modbus master communication rules

REQ parameter

188

MB_COMM_LOAD must be executed to configure a port before a MB_MASTER
instruction can communicate with that port.

If a port is to be used to initiate Modbus master requests, that port cannot be used by
MB_SLAVE . One or more instances of MB_MASTER execution can be used with that
port.

The Modbus instructions do not use communication interrupt events to control the
communication process. Your program must poll the MB_MASTER instruction for transmit
and receive complete conditions.

If your program operates a Modbus master and uses MB_MASTER to send a request to
a slave, then you must continue to poll (execute MB_MASTER) until the response from
the slave is returned.

Call all MB_MASTER execution for a given port from the same OB (or OB priority level).

REQ value FALSE = No request
REQ value TRUE = Request to transmit data to Modbus Slave(s).

You must supply this input through an edge triggered contact on the first call for
MB_MASTER execution. The edge triggerd pulse will invoke the transmission request once.

All

inputs are captured and held unchanged for one request and response triggered by this

input.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.3 Global library instructions

Internally the MB_MASTER will start a state machine to make sure that no other master is
allowed to issue a request until this request has been completed.

In addition if the same instance of the call to the MB_MASTER FB is executed again with the
REQ input TRUE before the completion of the request, then no subsequent transmissions
will be made. However, as soon as the request has been completed, a new request will be
issued if MB_MASTER is executed with the REQ input set to true.

DATA_ADDR and MODE parameters select the Modbus function type

DATA_ADDR (starting Address in the Slave): Specifies the starting address of the data to be
accessed in the Modbus slave.

MB_MASTER uses a MODE input rather than a Function Code input. The combination of
MODE and Modbus address range determine the Function Code that is used in the actual
Modbus message. The following table shows the correspondence between MBUS_MASTER

parameter MODE, Modbus function code, and Modbus address range.

MB_MASTER Modbus functions

Modbus address parameter Address type Modbus data length Modbus function
DATA_ADDR parameter DATA_LEN

Mode 0

Read 00001 to 09999 Output bits 1 to 2000 O1H
10001 — 19999 Input bits 1 to 2000 02H
30001 - 39999 Input registers 1to 125 04H
40001 to 49999 Holding registers 1t0 125 03H
400001 to 465536(Extended)

Mode 1

Write 00001 to 09999 Output bits 1 (single bit) 05H
40001 to 49999 Holding registers 1 (single word) 06H
400001 to 465536(Extended)
00001 to 09999 Output bits 2 to 1968 15H
40001 to 49999 Holding registers 210123 16H
400001 to 465536(Extended)

Mode 2

Some Modbus slaves do not support single bit or word writes with Modbus functions 05H and 06H.
is used to force single bit and word writes using Modbus functions 15H and 16H.

In these cases, Mode 2

Write 00001 to 09999 Output bits 1to 1968 15H
40001 to 49999 Holding registers 1t0 123 16H
400001 to 465536(Extended

Mode 11

¢ Reads an event counter word from the Modbus slave that is referenced as an input to MB_ADDR

e On a Siemens S7-1200 Modbus slave, this counter is incremented every time that the slave receives a valid read or
write (non-broadcast) request from a Modbus master.

e The returned value is stored in the word location specified as the input to DATA_PTR.
e Avalid DATA_LEN is not required for this mode.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

189

Programming instructions

6.3 Global library instructions

MB_MASTER Modbus functions

Mode 80

e Checks the communication status of the Modbus slave that is referenced as an input to MB_ADDR

o The setting of the NDR output bit on the MB_MASTER instruction indicates that the addressed Modbus slave
responded with the appropriate response data.

e No data is returned to your program.
e Avalid DATA_LEN is not required for this mode.

Mode 81

e Resets the event counter (as returned by Mode 11) on the Modbus slave that is referenced as an input to MB_ADDR

e The setting of the NDR output bit on the MB_MASTER instruction indicates that the addressed Modbus slave
responded with the appropriate response data.

o No data is returned to your program.
e Avalid DATA_LEN is not required for this mode.

DATA_PTR parameter

Points to the local source or destination address (the address in the S7-1200 CPU) of the
data being written or read, respectively. When you use the MB_MASTER instruction to
create a Modbus master, you must create a global data block that provides data storage for
reads and writes to Modbus slaves.

Note
The DATA_PTR parameter must reference a classic Data block type

You must uncheck the "Symbolic address only" box when you add a new Data block to
create a classic global DB type.

Data block structures for the DATA_PTR parameter

190

® These data types are valid for word reads of Modbus addresses 30001 to 39999, 40001
to 49999, and 400001 to 465536 and also for word writes to Modbus addresses 40001 to
49999 and 400001 to 465536.

— Standard array of WORD, UINT, or INT data types, as shown below.

— Named WORD, UINT, or INT structure where each element has a unique name and
16 bit data type.

— Named complex structure where each element has a unique name and a 16 or 32 bit
data type.

® For bit reads and writes of Modbus addresses 00001 to 09999 and 10001 to 19999.
— Standard array of Boolean data types.
— Named Boolean structure of uniquely named Boolean variables..

e Although not required, it is recommended that each MB_MASTER instruction have its
own separate area in a global data block. The reason for this recommendation is that
there is a greater possibility of data corruption if multiple MB_MASTER instructions are
reading and writing to the same area of a global data block.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions
6.3 Global library instructions

® There is no requirement that the DATA_PTR data areas be in the same global data block.
You can create one data block with multiple areas for Modbus reads, one data block for
Modbus writes, or one data block for each slave station.

e All of the arrays in the example below are created as base 1 arrays [1 ... ##]. The arrays
could have been created as base 0 arrays [0 ... ###] or a mix of base 0 and base 1.

Example MB_MASTER instructions accessing DATA_PTR global data blocks

The example global data block shown below uses 4 uniquely named 6 word arrays for
Modbus request data storage. Although the data arrays in this example are the same size,
the arrays can be of any size and are shown as the same size to simplify the examples.
Each array could also be replaced with a data structure that includes more descriptive tag
names and mixed data types. Examples of alternative data structures are provided in the
HR_DB parameter description of the MB_SLAVE instruction (Page 198).

The MB_MASTER instruction examples below show only the DATA_PTR parameter and not
the other required parameters. The purpose of the examples is to show how the
MB_MASTER instruction uses the DATA_PTR data block.

The arrows indicate how each array is associated to different MB_MASTER instructions.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 191

Programming instructions

6.3 Global library instructions

Data

Mame
1 » Static
2 » Array_1
3 Array_1[1
< Array_1[2]
5 &rrav_1[3]
] Brray_1[4]
7 Array_1[5]
0 Array_1[E]
4 - Array_2
10 Brrav_2[1
11 Arrav_2[2]
12 Array_2[3]
13 Brray_2[4]
14 Array_2[5]
15 Array_2[6]
16 - Hrrav_3
17 Brrav_3[
18 Array_3[2]
149 Array_J[J]
20 Array_3[4]
21 Array_3[0]
22 Array_ 3R]
23 - Hrray_d
24 Array_d1
20 Array_4[2]
26 Array_d[3]
27 Brrav_d[4]
28 Array_4[8]
29 Array_4[6]

Data tvpe

Array [1 ..
Wiard
YWord
Ward

wwiord
Array [1 ..
Word
Word

YWiord

Word
Wiard
Arrayv [1 ..
Word
Wiard
Word

Wiard
Ward
Brrav [1 ..
Wiard
Ward
Word

Wiard
“Word

il

]

E]

]

itz et
“ME_MASTER_
oe™
"MB_MASTER"
EM 1 —
= REQ DOME =
MB_ADDA BUSY =
MODE ERROR =
DATA_ADDR STATUS
DATA_LEM
“Dats” duray 1 - DATA_FTR
"WE_MASTER_
DE"
"MB_MASTER™"
EM END —
= HED DOME
MEB_ADDR BUSY =
MODE ERROR =
DATA_ADDR STATUS
DATA_LEM
"Data” Anay 2 — DATA_PTR
"MB_MASTER_
oe"
“MB_MASTER"
EM EMND —
= REQ DOME =i .,
MB_ACDR BUISY - ...
MCDE ERRODR =,
DATA_SDOA STATUS
DuATA_LEM
Drala” Aray_3 - DATA_PTF
"WME_MASTER_
DE"
“MEB_MASTER™
EMH END =—
- REQ DOME =,
ME_ADDR BUSY =
HODE ERROR =
DATA_ADDR STATUS
DATA_LEM
"Data” Anay 4 - DATA_PTR

The first element of any array or structure is always the first source or destination of any
Modbus read or write activity. All the scenarios below are based on the diagram above.

Scenario 1: If the first MB_MASTER instruction reads 3 words of data from Modbus
address 40001 on any valid Modbus slave, then the following occurs.

The word from address 40001 is stored in "Data".Array_1[1].
The word from address 40002 is stored in "Data".Array_1[2].
The word from address 40003 is stored in "Data".Array_1[3].

Scenario 2: If the first MB_MASTER instruction reads 4 words of data from Modbus
address 40015 on any valid Modbus slave, then the following occurs.

The word from address 40015 is stored in "Data".Array_1[1].

192

S7-1200 Programmable controller

System Manual, 04/2009, A5E02486680-01

Programming instructions

6.3 Global library instructions

The word from address 40016 is stored in "Data".Array_1[2].
The word from address 40017 is stored in "Data".Array_1[3].
The word from address 40018 is stored in "Data".Array_1[4].

Scenario 3: If the second MB_MASTER instruction reads 2 words of data from Modbus
address 30033 on any valid Modbus slave, then the following occurs.

The word from address 30033 is stored in "Data".Array_2[1].
The word from address 30034 is stored in "Data".Array_2[2].

Scenario 4: If the third MB_MASTER instruction writes 4 words of data to Modbus address
40050 on any valid Modbus slave, then the following occurs.

The word from "Data".Array_3[1] is written to Modbus address 40050.
The word from "Data".Array_3[2] is written to Modbus address 40051.
The word from "Data".Array_3[3] is written to Modbus address 40052.
The word from "Data".Array_3[4] is written to Modbus address 40053.

Scenario 5: If the third MB_MASTER instruction writes 3 words of data to Modbus address
40001 on any valid Modbus slave, then the following occurs.

The word from "Data".Array_3[1] is written to Modbus address 40001.
The word from "Data".Array_3[2] is written to Modbus address 40002.
The word from "Data".Array_3[3] is written to Modbus address 40003.

Scenario 6: If the fourth MB_MASTER instruction uses a Mode 11 (retrieve valid message
count) from any valid Modbus slave, the following occurs.

The count word is stored in "Data".Array_4[1].

Example bit reads and writes using word locations as DATA_PTR input

Table 6- 1 Scenario 7: Read 4 output bits starting at Modbus address 00001

MB_MASTER input values Slave Modbus values
MB_ADDR 27 (Slave example) 00001 ON
MODE 0 (Read) 00002 ON
DATA_ADDR 00001 (Outputs) 00003 OFF
DATA_LEN 4 00004 ON
DATA_PTR "Data".Array_4 00005 ON
00006 OFF
00007 ON
00008 OFF

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 193

Programming instructions

6.3 Global library instructions

194

"Data".Array_4[1] values after Modbus request

MS (Most significant) Byte

LS (Least significant) Byte

xxxx-1011

XXXX=XXXX

x indicates that data is not changed

Table 6- 2 Scenario 8: Read 12 output bits starting at Modbus address 00003

MB_MASTER input values

Slave Modbus values

MB_ADDR 27 (Slave example) 00001 ON 00010 ON
MODE 0 (Read) 00002 ON 00011 OFF
DATA_ADDR 00003 (Outputs) 00003 OFF 00012 OFF
DATA_LEN 12 00004 ON 00013 ON
DATA_PTR "Data".Array_4 00005 ON 00014 OFF
00006 OFF 00015 ON
00007 ON 00016 ON
00008 ON 00017 OFF
00009 OFF 00018 ON

"Data".Array_4[1] values after Modbus request

MS Byte

LS Byte

1011-0110

0100-xxxx

x indicates that data is not changed

Table 6-3 Scenario 9: Write 5 output bits starting at Modbus address 00001

MB_MASTER input values Slave outputs before Slave outputs after
MB_ADDR 27 (Slave example) 00001 ON OFF
MODE 1 (Write) 00002 ON ON
DATA_ADDR 00001 (Outputs) 00003 OFF ON
DATA_LEN 5 00004 ON OFF
DATA_PTR "Data".Array_4 00005 ON ON
00006 OFF Unchanged
00007 ON Unchanged
00008 ON Unchanged
00009 OFF Unchanged

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.3 Global library instructions

"Data".Array_4[1] values for Modbus write request
MS Byte LS Byte

xxx1-0110 XXXXX-XXXX

x indicates that data is not used in the Modbus request

Table 6- 4 Scenario 10: Read 22 output bits starting at Modbus address 00003

MB_MASTER input values Slave Modbus values

MB_ADDR 27 (Slave example) 00001 ON 00014 ON

MODE 0 (Read) 00002 ON 00015 OFF

DATA_ADDR 00003 (Outputs) 00003 OFF 00016 ON

DATA_LEN 22 00004 ON 00017 ON

DATA_PTR "Data".Array_4 00005 ON 00018 OFF
00006 OFF 00019 ON
00007 ON 00020 ON
00008 ON 00021 OFF
00009 ON 00022 ON
00010 OFF 00023 ON
00011 OFF 00024 OFF
00012 ON 00025 OFF
00013 OFF 00026 ON

"Data".Array_4[1] values after Modbus request
MS Byte LS Byte
0111-0110 0110-1010

"Data".Array_4[2] values after Modbus request
MS Byte LS Byte
xx01-1011 XXXX-XXXX

x indicates that data is not changed

Example bit reads and writes using BOOL locations as DATA_PTR input

Although Modbus reads and writes to bit address locations can be handled through the use
of word locations, DATA_PTR areas can also be configured as Boolean data types,
structures or arrays to provide a direct 1 to 1 correlation for the first bit that is read or written
by using a MB_MASTER instruction.

If you use Boolean arrays or structures, it is recommended that you make the data size a
multiple of 8 bits (on byte boundaries). For example, when you create a Boolean array of 10
bits the STEP 7 Basic software will allocate 16 bits (2 bytes) in the global Data block for the
10 bits. Inside the data block, these would be stored as byte1 [xxxx xxxx] byte2 [---- -- XX]

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 195

Programming instructions

6.3 Global library instructions

where x indicates accessible data locations and — indicates locations that are inaccessible.
Modbus requests of up to a length of 16 bits are allowed, but the upper 6 bits would be
placed into byte 2 memory locations that are not referenced and are not accessible by your

program.

Boolean areas can be created as an array of Boolean values or as a structure of Boolean
variables. Both methods operate in an identical manner and differ only in how they are

created and accessed

in your program.

The global data block editor view below shows a single array of 16 Boolean values created
with base 0. The array could also have been created as a base 1 array. The arrow shows
how this array is associated with a MB_MASTER instruction.

Data
Mame Crata tvpe Offzet
1 » Static
2 - Bool Arraw [0 15] of .. - | 0.0
3 Boo EBool
4 Bool[l Einnl
5 Boal(2] MB_MARTER.
4] Eool[3] "MB_MASTER"
7 Bool[4] EN END —
a Eool[5] .. =REQ DOME - ...
£] Eool[6] ME_ADDR BUSY = ..
10 Bool[7] MODE ERFOR = ...
11 Bool[] DATA_ADDR STATUS
O R P
13 Eool[10] T —
14 Bool[11] Bool
15 Bool[12] Bool
16 Bool[13] Bool
17 Bool[14] Bool
13 Bool[15] Bool
Scenarios 11 and 12 show the correspondence of Modbus addresses to Boolean array
addresses.
Table 6- 5 Scenario 11: Write 5 output bits starting at Modbus address 00001
MB_MASTER input values Slave outputs before | DATA_PTR data Slave outputs after
MB_ADDR 27 (Slave example) 00001 ON "Data".Bool[0]=FALSE OFF
MODE 1 (Write) 00002 ON "Data".Bool[1]=TRUE ON
DATA_ADDR | 00001 (Outputs) 00003 OFF "Data".Bool[2]=TRUE ON
DATA_LEN 5 00004 ON "Data".Bool[3]-FALSE OFF
DATA_PTR "Data".Bool 00005 ON "Data".Bool[4]=FALSE OFF
00006 OFF Unchanged
00007 ON Unchanged
00008 OFF Unchanged
S7-1200 Programmable controller
196 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.3 Global library instructions

Table 6- 6 Scenario 12: Read 15 output bits starting at Modbus address 00004

MB_MASTER input values Slave Modbus value DATA_PTR data after

MB_ADDR 27 (Slave example) 00001 ON

MODE 0 (Read) 00002 ON

DATA_ADDR 00003 (Outputs) 00003 OFF "Data".Bool[0]=FALSE

DATA_LEN 15 00004 ON "Data".Bool[1]=TRUE

DATA_PTR "Data".Bool 00005 ON "Data".Bool[2]=TRUE
00006 OFF "Data".Bool[3]-FALSE
00007 ON Data".Bool[4]=TRUE
00008 ON Data".Bool[5]=TRUE
00009 ON Data".Bool[6]=TRUE
00010 OFF Data".Bool[7]=FALSE
00011 OFF Data".Bool[8]=FALSE
00012 ON Data".Bool[9]=TRUE
00013 OFF Data".Bool[10]=FALSE
00014 ON Data".Bool[11]=TRUE
00015 OFF Data".Bool[12]=FALSE
00016 ON Data".Bool[13]=TRUE
00017 ON Data".Bool[14]=TRUE
00018 OFF
00019 ON

Condition codes

STATUS value | Description

(W#16#....)

0000 No error

80C8 The specified response timeout (refer to RCVTIME or MSGTIME) is 0.

80D1 The receiver issued a flow control request to suspend an active transmission and
never re-enabled the transmission during the specified wait time.
This error is also generated during hardware flow control when the receiver does
not assert CTS within the specified wait time.

80D2 The transmit request was aborted because no DSR signal is received from the
DCE.

80EO The message was terminated because the receive buffer is full.

80E1 The message was terminated as a result of a parity error.

80E2 The message was terminated as a result of a framing error.

80E3 The message was terminated as a result of an overrun error.

80E4 The message was terminated as a result of the specified length exceeding the total
buffer size.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

197

Programming instructions

6.3 Global library instructions

STATUS value | Description
(W#16#....)
8180 Invalid port ID value
8186 Invalid Modbus station address
8188 Invalid Mode value or write mode to read only slave address area
8189 Invalid Data Address value
818A Invalid Data Length value
818B ¢ Invalid pointer to the local data source/destination: Size not correct
818C Pointer to a type safe DB type DATA_PTR (must be a Classic DB type)
8200 Port is busy processing a transmit request
6.3.2.3 MB_SLAVE
Description
The MB_SLAVE instruction allows your program to communicate as a Modbus slave using a
port on the Point-to-Point (PtP) CM 1241 RS485 or CM 1241 RS232 module. A Modbus
RTU master can issue a request and then your program responds via MB_SLAVE execution.
You must assign a unique Instance Data Block when you place the MB_SLAVE instruction in
your program. This MB_SLAVE Instance Data Block name is used when you specify the
MB_DB parameter on the MB_COMM_LOAD instruction.
Modbus communication functions (FC 1, 2, 4, 5, and 15) can read and write bits and words
directly in the PLC Input Process Image and Output process Image.
MB_SLAVE Modbus functions S7-1200
FC | Function Data area | Address range Data area CPU address
01 Read bits Output 1 to 8192 Output Process Image Q0.0 to Q1023.7
02 Read bits Input 10001 to 18192 Input Process Image 10.0 to 11023.7
04 Read words Input 30001 to 30512 Input Process Image IWO0 to IW1022
05 Write bit Output 1 to 8192 Output Process Image Q0.0 to Q1023.7
15 Write bits Output 1 to 8192 Output Process Image Q0.0 to Q1023.7
Modbus communication functions (FC 3, 6, 16) use a separate and unique Modbus holding
register data block that you must create, before you can specify the MB_HOLD_REG
parameter on the MB_SLAVE instruction.
MB_SLAVE Modbus functions S7-1200
FC | Function Data area Address range CPU DB data area CPU DB address
03 Read words Holding 40001 to 4999 MB_HOLD_REG Words 1 to 9999
Register 400001 to 465535 Words 1 to 65534
06 Write word Holding 4001 to 4999 MB_HOLD_REG Words 1 to 9999
Register. 400001 to 465535 Words 1 to 65534
S7-1200 Programmable controller
198 System Manual, 04/2009, ASE02486680-01

Programming instructions

6.3 Global library instructions

MB_SLAVE Modbus functions

S§7-1200

16 Write words Holding 4001 to 4999

MB_HOLD_REG Words 1 to 9999

Register

400001 to 465535

Words 1 to 65534

S$7-1200 MB_SLAVE Modbus diagnostic functions

FC | Sub-function | Description

08 0000H Return query data echo test: The MB_SLAVE will echo back to a Modbus master a word of data
that is received.

08 000AH Clear communication event counter: The MB_SLAVE will clear out the communication event
counter that is used for Modbus function 11.

11 Get communication event counter: The MB_SLAVE uses an internal communication event counter

CRC errors).

for recording the number of successful Modbus read and write requests that are sent to the Modbus
slave. The counter does not increment on any Function 8, Function 11, or broadcast requests. It is
also not incremented on any requests that result in a communication error (for example, parity or

The MB_SLAVE supports broadcast write requests from any Modbus master as long as the

request is for accessing valid

locations.

Regardless of the validity of a request, the MB_SLAVE gives no response to a Modbus
master as the result of a broadcast request.

LAD FBD
"MB_SLAVE_ “MEB_SLAVE_
e~ De"
: "MB_SLAVE" i ! “ME_SLAVE™ a
—EN END = MOR =
|MB_ADDR HOR = ={EM DR =
MB_HOLD_FRE DR = {ME_ADDR ERROR —
G ERROR 1 STATLIS
STAT LI5. .EE'HDLB'RE EMO =
Parameter Parameter | Data type Description
type
MB_ADDR IN USINT Modbus RTU Address (1 to 247):
The station address of the Modbus slave.
MB_HOLD_REG |IN VARIANT Pointer to the Modbus Holding Register DB. The
Holding Register DB must be a classic, global DB
See the MB_HOLD_REG note below.
NDR ouT BOOL New Data Ready:
e 0-No new data
¢ 1 —Indicates that new data has been written by
the Modbus master

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

199

Programming instructions

6.3 Global library instructions

Parameter Parameter | Data type Description
type
DR ouT BOOL Data Read:

e 0 - No dataread

¢ 1 —Indicates that data has been read by the
Modbus master

ERROR ouT BOOL Error:

e 0 - No error detected

e 1 —Indicates that an error was detected and the
error code supplied at parameter STATUS is
valid.

STATUS ouT WORD Error code

Modbus slave communication rules

Operation

CRC

200

>

Start

MB_COMM_LOAD must be executed to configure a port, before a MB_SLAVE instruction
can communicate with that port.

If a port is to respond as a slave to a Modbus master, then that port cannot be used by
MB_MASTER. Only one instance of MB_SLAVE execution can be used with a given port.

The Modbus instructions do not use communication interrupt events to control the
communication process. Your program must control the communication process by
polling the MB_SLAVE instruction for transmit and receive complete conditions.

If your program operates a Modbus slave, then MB_SLAVE must poll (execute
periodically) at a rate that allows it to make a timely response to incoming requests from a
Modbus master.

Call all MB_SLAVE executions from a cyclic interrupt OB.

MB_SLAVE must be executed periodically to receive each request from the Modbus Master
and then respond as required. The frequency of execution for MB_SLAVE is dependent
upon the response timeout period of the Modbus master. This is illustrated in the following
diagram.

Response

ADR

FC

timeout period |
Data CRC | ADR

|‘_\

Master sends Slave sends

I

Response Start

interval = 3.5 character times delay time| ADR | FC Data CRC |interval

The response timeout period is the amount of time a Modbus master waits for the start of a
response from a Modbus slave. This time period is not defined by the Modbus Protocol, but
is a parameter of each Modbus master. The frequency of execution (time between one
execution and the next execution) of MB_SLAVE must be based on the particular
parameters of your Modbus master. At a minimum, you should execute MB_SLAVE twice
within the response timeout period.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

6.3 Global library instructions

MB_HOLD_REG parameter examples

MB_HOLD_REG is a pointer to the Modbus holding register Data block. This DB is used to
hold data values that a Modbus master is allowed to access (read or write). You must create
the data block and assign the data type structure that will be read from and written to, before
it can be used with the MB_SLAVE instruction.

Note
The Modbus Holding Register Data Block must be created as a classic global DB type.

You must uncheck the "Symbolic address only" box when you add a new Data block to
create a classic global DB type.

The holding registers can use these DB data structures:
e Standard array of words

® Named word structure

® Named complex structure

The following program examples show how to use the MB_HOLD_REG parameter to handle
these DB data structures.

Example 1 - Standard array of words

This example holding register is an array of words. The data type assignments can be
changed to other word size types (INT and UINT).

Advantages:
o This type of holding register structure is very fast and simple to create.

e The program logic to access a data element is simplified.

Disadvantages:

¢ Although you can programmatically reference each array element by the symbolic
names ("HR_DB"."Array"[1] through "HR_DB"."Array"[10]), the names do not describe
the internal function of the data.

e The array can consist of only one data type. Type conversions may be required in a
user program with rigid type control.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 201

Programming instructions

6.3 Global library instructions

202

This is how an array of words structure would appear in the data block editor.

HR_DH
Fiwmin Lot besm Oyl Crwd waa v nivsm inmal valur Frtam Cormernent
= Elatc
w By oy [V 10 eie = QU0 0001 w 4001 0

Arrd1] whaed W ED000 e EHGO00
harigd] Word Wi BED000 w0000
Aarme] wWiond Wl 0000 W FLES0000
A k] Word W RRT000 ‘e Y ESO000
Bar 5] Wiand il RADO00 Tl Q000
At il Wid W EF0000 W' F L EF0000
arras{T] Word L] T EN000
Aara{l] Wil Wil BEO000 Wi EH0000
dar 9] Word Wl 0000 'w' W EEHO000
Arae{10] Ward Wil 0000 T 0000

The image below shows how the array would be assigned to the MB_HOLD_REG input of an
MB_SLAVE instruction.

“ME_SLAVE_
be"

"MB_SLAVE"
EM EMNO
' — ME_ADDR MDA = _ .
ME_HOLD_RE DA -4
“HR_DE" &nay - G ERROR =
STATUS

Each element of the array can be accessed by symbolic name, as shown below. In this
example, a new value is moved into the second element of the array which corresponds to
Modbus address 40002.

MHOVE
EM END
TER12% <IN

"HR_DE"
OUT1 - Asisgl2)

Each of the words in the array, as defined in the data block, provides the MB_SLAVE
instruction with Modbus holding register addresses. In this instance, since there are only 10
elements in the array, there are only 10 available Modbus holding register addresses usable
by this MB_SLAVE instruction and accessible by a Modbus master.

The correlation of the array element names to Modbus addresses is shown below.

"HR_DB".Array[1] Modbus address 40001
"HR_DB ". Array[2] Modbus address 40002
"HR_DB". Array[3] Modbus address 40003
"HR_DB". Array[9] Modbus address 40009
"HR_DB ".Array [10] Modbus address 40010

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions
6.3 Global library instructions

Example 2 - Named word structure
This example holding register is a series of words with descriptive symbolic names.

Advantages:
e Each structure element has a descriptive name with a specific data type assigned to it.

Disadvantages:
o |t takes longer to create this type of structure than the standard array of words.
e The elements require additional symbolic referencing when used in a user program.

Where the first element of the simple array is referenced as "HR_DB".Array[0] the first
element of this type is referenced "HR_DB".Data.Temp_1.

This is how a named word structure would appear in the data block editor. Each element has
a unique name and can be a WORD, UINT, or INT.

HA_DB
Marse Doans g Ofipet wtal vibue Fletaen =
w flatc

« Dlata Stuce = 0l
Temp_1 or 0a 0 40001
Temp_2 tet &0 i} &000F
Temp 1 i 40 o 40003
Chavicrd_Caiarst Fer (1] 0 40004
e Corunt u o] &0005
Rewark_Count Ut i) o £00085
Ling_ B LF 120 o 40007
duwgy_Tirven Uikl 140 i) &000R
Cella_1 wiatd 180 i} 40008
Cod_2 whiid 188 o 40010

The image below shows how the data structure above would be assigned to the
MB_HOLD_REG input of an MB_SLAVE instruction in your program.

"MB_SLAVE
Te"
"MB_SLAVE"
EM END
" - MB_ADDR HDR -
ME_HOLD_RE DR~
"HR_DE" Dista G ERROR = .
STATUS

Each element of the array can be accessed by its symbolic name as shown below. In this
example, a new value is moved into the second element of the array which corresponds to
Modbus address 40002.

MOVE

EN ENO

L "HR_DE" Data
OUTT - Teep, 2

The correlation of the data element names to Modbus addresses is shown below.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 203

Programming instructions

6.3 Global library instructions

"HR_DB".Data.Temp_1 Modbus address 40001
"HR_DB".Data.Temp_2 Modbus address 40002
"HR_DB".Data.Temp_3 Modbus address 40003
"HR_DB".Data.Good_Count Modbus address 40004
"HR_DB".Data.Bad_Count Modbus address 40005
"HR_DB".Data.Rework_Count Modbus address 40006
"HR_DB".Data.Line_Stops Modbus address 40007
"HR_DB".Data.Avg_Time Modbus address 40008
"HR_DB".Data.Code_1 Modbus address 40009
"HR_DB".Data.Code_2 Modbus address 40010

Example 3 - Named complex structure

204

This example holding register is a series of series of mixed data types with descriptive
symbolic names.

Advantages:
o Each structure element has a descriptive name with a specific data type assigned to it.

o |t allows for the direct transfer of non-word based data types.

Disadvantages:
o |t takes longer to create this type of structure than the standard array of words.

e The Modbus master needs to be configured to accept the data that it will be receiving
from the Modbus slave. As shown in the image below, Temp_1 is a 4 byte real value.
The receiving master needs to be able to reassemble the 2 received words back into
the real value that is expected.

e The elements require additional symbolic referencing in your program. Where the first
element of the simple array is referenced as "HR_DB".Array[0], the first element of this
type is referenced as "HR_DB".Data.Temp_1.

This is how a named complex structure would appear in the data block editor. Each element
has a unique name with multiple sizes and data types.

HA_DE
Hame Chutia Bgrm Crlly i al walur Fartain Comrmart
w SAnbc
w Dlata Seudd w 00 loaftriy wddenyyey 40001 so SO001E
Taerg_1 Rl ao =11} 40001 and 40002
Teeva I Frayl a0 -1} 4000 and 40004
G Cioura L] 1) B 4000 arvd 40006
Bad_Cownt [La 2] 120 [~ A0l wnd 400004
Fpamel _Doard (Lot LLT [400 and 40010
Ling_Bwps It 200 o Eaiilh
dovg_Tima Ird 230 B T
Lasg Code Dialerd 40 [4000] and 40014
Code_1 tw'zed S8 0 [Lk
ade_J twhzed ¥ [ADIE

The correlation of the data element names to Modbus addresses is shown below.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Programming instructions

"HR_DB".Data.Temp_1
"HR_DB".Data.Temp_2
"HR_DB".Data.Good_Count
"HR_DB".Data.Bad_Count
"HR_DB".Data.Rework_Count
"HR_DB".Data.Line_Stops
"HR_DB".Data.Avg_Time
"HR_DB".Data.Long_Code
"HR_DB".Data.Code_1
"HR_DB".Data.Code_2

6.3 Global library instructions

Modbus addresses 40001 and 40002
Modbus addresses 40003 and 40004
Modbus addresses 40005 and 40006
Modbus addresses 40007 and 40008
Modbus addresses 40009 and 40010
Modbus address 400011

Modbus address 400012

Modbus address 40013 and 40014
Modbus address 40015

Modbus address 40016

Another S7-1200 CPU operating as a Modbus master can use the MB_Master instruction
and an identical data structure to receive the block of data from the S7-1200 CPU operating
as a Modbus slave. This Modbus Master instruction will copy all 16 words of data directly
from the slave's HR_DB data block into the master's ProcessData data block, as shown

below.
"ME_MASTER_
[0
"WE_MASTER" “Tag ¥
EM END ———~ }——
“Tag B DIONE -1
{P} REQ BUSY =
"Tag 7T 27 - MB_ADDR ERROR -1 _.
MODE STATUS
DaTA_ADDRA
- _ DATA_LEN
"Froces:Data”
Data - DATA_FTR
FrocessDala
Misi Dhat b L T [T Fatas Cormasger
- Tlatc
= Dty Emnast = Q0 Blodtu addee it 40001 2 400016
Temp_1 Azal an o 0001 snd 40002
Temp_2 Fleal 40 1} AP0 and 40004
Qood Count UiDieA L1} o S000% and 40004
Blad_Couma LiDisa 120 o ADO0T whd 40009
Rewark_Count LiDira 1] a 000 and 40010
Line_Sieps L] 200 i} 40011
dog_Taww tem pard 1 1} ooz
Long_Cods Dhward 40 o 40011 and 40014
Coeda 1 Whard 20 o 400N%
o

Code_2 Ward oo

Ll

A series of Modbus master Data_PTR data block locations can be used to transfer the same
or different structures from multiple Modbus slaves.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

205

Programming instructions

6.3 Global library instructions

Condition codes

206

STATUS value | Description

(W#16#....)

80C8 The specified response timeout (refer to RCVTIME or MSGTIME) is 0

80D1 The receiver issued a flow control request to suspend an active transmission and
never re-enabled the transmission during the specified wait time.
This error is also generated during hardware flow control when the receiver does
not assert CTS within the specified wait time.

80D2 The transmit request was aborted because no DSR signal is received from the DCE

80EO The message was terminated because the receive buffer is full

80E1 The message was terminated as a result of a parity error

80E2 The message was terminated as a result of a framing error

80E3 The message was terminated as a result of an overrun error

80E4 The message was terminated as a result of the specified length exceeding the total
buffer size

8180 Invalid port ID value

8186 Invalid Modbus station address

8187 Invalid pointer to MB_HOLD_REG DB

818C Pointer to a type safe DB type MB_HOLD_REG DB (must be a Classic DB type)
Response code
sent to Modbus
master (B#16#..)

8380 No response CRC error

8381 01 Function code not supported

8382 No response Data length error

8383 02 Data address error

8384 03 Data value error

8385 03 Data diagnostic code value not supported (function code 08)

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PROFINET 7

The S7-1200 CPU has an integrated PROFINET port which supports both Ethernet and
TCP/IP-based communications standards. The following application protocols are supported
by the S7-1200 CPU:

® Transport Connection Protocol (TCP)

® |SO Transport over TCP (RFC 1006)

The S7-1200 CPU is able to communicate with the following devices:
e Other S7-1200 CPUs

e STEP 7 Basic programming device

e HMis

® Non-Siemens devices using standard TCP communications protocols (Transmission
block (T-block))

There are two ways to communicate using PROFINET:

e Direct connection: Use direct communication when you are using a programming device,
HMI, or another CPU connected to a single CPU.

e Network connection: Use network communications when you are connecting more than
two devices (for example, CPUs, HMIs, programming devices, and non-Siemens
devices).

Direct connection: Programming device
connected to S7-1200 CPU

Direct connection: HMI connected to S7-
1200 CPU

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 207

PROFINET

7.1 Communication with a programming device

Direct connection: An S7-1200 CPU
connected to another S7-1200 CPU

Network connection: More than two devices
connected together

® CSM1277 Ethernet Switch

Note

An Ethernet switch is not required for a direct connection between a programming device or
HMI and a CPU. An Ethernet switch is required for a network with more than two CPUs or
HMI devices.

Note

The rack-mounted Siemens CSM1277 4-port Ethernet switch can be used to connect your
CPUs and HMI devices. The PROFINET port on the S7-1200 CPU does not contain an
Ethernet switching device.

71 Communication with a programming device

A CPU can communicate with a STEP 7 Basic programming device on a network. The
following must be considered when setting up communications between a CPU and a STEP
7 Basic programming device:

e Configuration/Setup: Hardware configuration is required.

® No Ethernet switch is required for one-to-one communications; an Ethernet switch is
required for more than two devices in a network.

S7-1200 Programmable controller
208 System Manual, 04/2009, ASE02486680-01

PROFINET
7.1 Communication with a programming device

711 Establishing the hardware communications connection

The PROFINET interfaces establish the physical connections between a programming
device and a CPU. Since Auto-Cross-Over functionality is built into the CPU, either a
standard or crossover Ethernet cable can be used for the interface. An Ethernet switch is not
required to connect a programming device directly to a CPU.

Follow the steps below to create the hardware connection between a programming device
and a CPU:

1. Install the CPU (Page 24).
2. Plug the Ethernet cable into the PROFINET port shown below.

3. Connect the Ethernet cable to the programming device.

©) PROFINET port

An optional strain relief is available to strengthen the PROFINET connection.

7.1.2 Configuring the devices

If you have already created a project with a CPU, open your project in the TIA Portal.

If not, create a project and insert a CPU (Page 64) into the rack. In the project below, a CPU
is shown in the "Device View" of the TIA Portal.

SICMERS

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 209

PROFINET
7.1 Communication with a programming device

71.3 Assigning Internet Protocol (IP) addresses

7.1.31 Assigning IP addresses to programming and network devices

If your programming device is using an on-board adapter card(for example, an Intel(R)
PRO/1000 MT Network Connection) connected to your plant LAN (and possibly the world-
wide web), the IP Address Network ID and subnet mask of your CPU and the programming
device's on-board adapter card must be exactly the same. The Network ID is the first part of
the IP address (first three octets) (for example, 211.154.184.16) that determines what IP
network you are on. The subnet mask normally has a value of 255.255.255.0; however,
since your computer is on a plant LAN, the subnet mask may have various values (for
example, 255.255.254.0) in order to set up unique subnets. The subnet mask, when
combined with the device IP address in a mathematical AND operation, defines the
boundaries of an IP subnet.

Note

In a world-wide web scenario, where your programming devices, network devices, and IP
routers will communicate with the world, unique IP addresses must be assigned to avoid
conflict with other network users. Contact your company IT department personnel, who are
familiar with your plant networks, for assignment of your IP addresses.

If your programming device is using an Ethernet-to-USB adapter card (for example, a D-
LINK DUB E100 USB 2.0 Fast Ethernet Adapter [TCP/IP]) connected to an isolated network,
the IP Address Network ID and subnet mask of your CPU and the programming device's
Ethernet-to-USB adapter card must be exactly the same. The Network ID is the first part of
the IP address (first three octets) (for example, 211.154.184.16) that determines what IP
network you are on. The subnet mask normally has a value of 255.255.255.0. The subnet
mask, when combined with the device IP address in a mathematical AND operation, defines
the boundaries of an IP subnet.

Note

An Ethernet-to-USB adapter card (for example, a D-LINK DUB E100 USB 2.0 Fast Ethernet
Adapter [TCP/IP]) is useful when you do not want your CPU on your company LAN. During
initial testing or commissioning tests, this arrangement is particularly useful.

S7-1200 Programmable controller
210 System Manual, 04/2009, ASE02486680-01

PROFINET

7.1 Communication with a programming device

adapter card

(for example, an
Intel(R)
PRO/1000 MT
Network
Connection)

your plant
LAN (and
possibly the
world-wide
web)

Programming Network Internet Protocol (IP) Address | Subnet Mask

Device Adapter | Type

Card

On-board Connected to | Network ID of your CPU and The subnet mask of your CPU

the programming device's on-
board adapter card must be
exactly the same.

The Network ID is the first part
of the IP address (first two
octets) (for example,
211.154.184.16) that
determines what IP network
you are on.)

and the on-board adapter card
must be exactly the same.

The subnet mask normally has a
value of 255.255.255.0; however,
since your computer is on a plant
LAN, the subnet mask may have
various values (for example,
255.255.254.0) in order to set up
unique subnets. The subnet
mask, when combined with the
device IP address in a
mathematical AND operation,
defines the boundaries of an IP
subnet.

Ethernet-to-USB
adapter card

(for example, D-
LINK DUB E100
USB 2.0 Fast
Ethernet Adapter
[TCP/IP]

Connected to
an isolated
network

Network 1D of your CPU and
the programming device's
Ethernet-to-USB adapter card
must be exactly the same.

The Network ID is the first part
of the IP address (first two
octets) (for example,
211.154.184.16) that
determines what IP network
you are on.)

The subnet mask of your CPU
and the Ethernet-to-USB adapter
card must be exactly the same.

The subnet mask normally has a
value of 255.255.255.0. The
subnet mask, when combined
with the device IP address in a
mathematical AND operation,
defines the boundaries of an IP
subnet.

Assigning or checking the IP address of your programming device using "My Network Places" (on

your desktop)

You can assign or check your programming device's IP address with the following menu

selections:

® (Right-click) "My Network Places"

® "Properties"

® (Right-click) "Local Area Connection"

® "Properties"

In the "Local Area Connection Properties" dialog, in the "This connection uses the following
items:" field, scroll down to "Internet Protocol (TCP/IP)". Click "Internet Protocol (TCP/IP)",
and click the "Properties" button. Select "Obtain an IP address automatically (DHCP)" or

"Use the following IP address" (to enter a static IP address).

Note

Dynamic Host Configuration Protocol (DHCP) automatically assigns an IP address to your
programming device upon power up from the DHCP server.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

21

PROFINET

7.1 Communication with a programming device

Checking the IP address of your programming device using the "ipconfig" and "ipconfig /all"

S7-1200 Programmable controller

commands

You can also check the IP address of your programming device, and, if applicable, the IP
address of your IP router (Gateway) with the following menu selections:

e "Start" button (on your desktop)

. IlRunll

In the "Run" dialog, in the "Open" field, enter "cmd" and click the "OK" button. In the
"C:\WINDOWS\system32\cmd.exe" dialog that is displayed, enter the command "ipconfig".
An example result is shown below:

Microzoft Windows XP [Uew .1.266808]

Gy Copuright 19 2081 Hicrosoft Corp.

CisDocuments and Settingsgraypalipconfig

Windows [P Configuration

Ethernet adapter Local Area Connection:

4 | 3 _.é
Further information can be displayed with an "ipconfig /all" command. Your programming
device's adapter card type and Ethernet (MAC) address can be found here:

WINDOWS', system32homd.exe
Windows [P Configuration
Hozt Hame e e e e = : APHZBWIEDL DT
i Inz 5 i . : uzsPB2.ziemens . net
| Ena i&léﬂ.: :
y Enahl . .
HI:!-!I"I::EI I-:I.!ir__
Ethernet adapter Local Area Connection:
on—specific DHS Suffix iemens . net
i n Hetitrene 57xx Gi
o llew
AB-B1-AB-A4
5
8
g
8.
g
8
y WIS 8.
lagy WINE
e Obtaine 7. 2809
Lease Expires
212

System Manual, 04/2009, A5E02486680-01

PROFINET

Assigning an IP address to a CPU

You can use one of the following two methods to assign IP addresses to a CPU:

7.1 Communication with a programming device

® Assign a temporary IP address online

® (Configuring a permanent IP address

7.1.3.2 Assigning a temporary IP address online

You can assign an IP address to a network device online. This is particularly useful in an

initial device configuration.

Use the following procedure to assign an IP address online:

1. In the "Project tree," verify that

no IP address is assigned to the

CPU, with the following menu

selections:

e "Online access"

e <Adapter card for the network
in which the device is
located>

e "Update accessible devices"

2. In the "Project tree," select
"Add new device" to add a new
CPU to your project.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

Dpvices
—_j

w] Frogecr 20509
"‘ ki rebrs dirncs
iy Decices & Hetworks
¥ ,.] Cannign dats
b 40 Linipieges &P omies
- g Orilenie mgenl
¥ _Rinteb RS PO GO0 MT 1Retwed Ctn]
= _f O-ink: DHJE-E 120 RFSE 2 0 Faot Ech m
s date siceanile dovces)
* m B Qo LB - -2 -0 1
F o) SIMATIC Card Feaded

Devices

) O =2
=] Frojet_020809
[) Add mewe device
;5 Decrsad & Natitals
» (i FLC_ 1 [P0 12048 DODCRY]
» g Cormmen data
¥ D Lenguages & Reieanies
= g Onileve socess
b f) el) 00 500 ME BBetaedh Con]
w0 O-Lind DUB-E 100 WSR2 0 Fact Eth 'J
Bz Update atoessible deages
¥ T e =D S 1

¥ g SIMATIC Card Peader

213

PROFINET

7.1 Communication with a programming device

214

3. In the "Project tree," select the

CPU.

4. Click the "Download to device"

button.

5. In the "Extended download to
device" dialog, in the "PG/PC
interface for loading" field, use

the dropdown to select the

adapter card for the network in

which the device is located.

6. Click the "Check all accessible

devices" checkbox.

Dievices
o0 =4

w |] Progact_020809
B A0 e device
j; Drearies & Hetworks
-
» 5 Corunen data
b 4D Linguages L heisaites
= g} Orilene acoens
¥] b b IRO0 0050 MT Hieteerl; Con 18
w [O-Link BUB-E 100 S0 20 Fast Ech B
B Update atcessible devace:
1] [. Rk e D00
¥ [SIMANIEC Card Feader

wols Window Help
e M Fooo

mﬂmluadwd:\dte!

ot danehs saben o BLE 1T

Dt B d 4 e AR
AL SR EE A FEIRLA N
PR e b g | W Sss SETID R Db e
& X

damvehle s L i

e el TR e

| - Eoposrd g [- [Ty
‘ B E rirw et
| [
=
I g [
gl ineis pniey o W 1Y
[[r—— (- e,
mE ER RS ST | A PEEARRA N
PR s b g W Sss SETID R Do
n
B s L e | Sl O
| | Bevos Eonrd Uit el ABEEIE F g i
- - [) Bl -
- e T S IET e T e PSR -
| b
| =

S7-1200 Programmable controller
04/2009, A5E02486680-01

System Manual,

PROFINET

7.1 Communication with a programming device

7. In the "Accessible devices in
target network" field, click the e
device with a MAC address (12 ! sy SunE. | o mslass
hexadecimal character value). I

Then, click the "Load" button.

[e P T T

L e e T

L
8. As the Compile process takes |
place, the "Continue" checkbox | @7
will appear. Click this checkbox x g'h —— T -
in order to complete the Compile r trestoed =
process.

el i-d' yo-

9. As the Download process |
takes place, the "Start all" [—
checkbox will appear. Leave this | & 5 e e

1 % saswsid i ol 1 0 et il B T

checkbox blank so that the CPU
will remain in STOP mode. Click
the "Finish" button to complete
the download.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 215

PROFINET

7.1 Communication with a programming device

216

10. In the "Project tree," verify
that no IP address is assigned to
the CPU, with the following menu

selections:

e "Online access"

e <Adapter card for the network
in which the device is
located>

e "Update accessible devices"

Note: All IP addresses connected
to the selected network will
appear beneath "Update
accessible devices."

11. In the "Project tree," make
the following menu selections:

"Online access"

<Adapter card for the network
in which the device is
located>

"Update accessible devices"
<IP address>
"Online & diagnostics"

Dipvices
R -

w] Propecr_ 00809
.’ Add rep dernie
gy Devioes & Networks
» [PLC_Y [OPU 12040 DODCR]
¥ ,._'| Comuren data
¥ 'ﬂ Langusges & Pesomces
*"';p Ol pigets
¥ B anvtabFs PROI 0s0 MIT Detwvork Con BB
w [O-Lank DUB-E 160 W58 2 0 Fart Ech I
L Updote accerwhle dmeces
D P 12 EE O 1 PLC_T
¥ [SIMATIC Card Paader

Project tron q

Dievices
o0 — il]
w | Progect_ 020809
B A mew deice
g Deeces & Rietead
» [PLC_1 [OPU 12140 DODOmly]
¥ [Comimen data
b D Languages & Peseurces
= [y Online aciess
(] E irita B PR G0eb LIT Hleteork Con 1
= U O-Link DUB-ERO0 WSE 2 0 Fast Eth 18
ﬁ} Ugdate accesble deaes
¥
¥ g smiame o

X
1 Copy n) P

x

Paift el

S7-1200 Programmable controller

System Manual, 04/2009, A5E02486680-01

PROFINET

12. In the "Online & diagnostics
dialog, make the following menu
selections:

¢ "Functions"

e "Assign IP address"

13. In the "IP address" field,
enter your new temporary IP
address.

14. In the "Project tree," verify

that your new IP address has

been assigned to the CPU, with

the following menu selections:

e "Online access"

e <Adapter for the network in
which the device is located>

o "Update accessible devices"

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

7.1 Communication with a programming device

R Y T
[y r—— R
Gmaadl
[T S T W

g d pagh
2l

Gragme e e
- P
(STr.
e

[TerrA—

Mg i Par b prm g

A F e

e i
Fabirn
Bolerwl nivven mpl. 199

L e

L

Davices

K

W

- _;Frn-j“l_dﬂ 1505
['-dE-M deribie
b Dedidies & Bhemaarts
b P [P 2 1 DelDy]
b LG Sprachen & Pessoursen
= g Onilne adeis
b InteliF} FRCN 000 LT Hetvoork Con 18
w [Deunk DAR-E 00 USE 1.0 FastEth I
[:X] Lpdate scosssibie devices
» P92 168 2 77 cpua™) 200

* L ST Cand Peadar

217

PROFINET

7.1 Communication with a programming device

7.1.3.3

Configuring a permanent IP address

Configuring the PROFINET interface

After you configure the rack with the CPU (Page 209) , you can configure parameters for the
PROFINET interface. To do so, click the green PROFINET box on the CPU to select the
PROFINET port. The "Properties" tab in the inspector window displays the PROFINET port.

EEAEEE RS RERE AR

I
L

.-"_:J

o
LS

® PROFINET port

Configuring the IP address

218

Ethernet (MAC) address: In a PROFINET network, each device is assigned a Media Access
Control address (MAC address) by the manufacturer for identification. A MAC address
consists of six groups of two hexadecimal digits, separated by hyphens (-) or colons (:), in
transmission order, (for example, 01-23-45-67-89-ab or 01:23:45:67:89:ab).

All devices must have a unique MAC address if on the same PROFINET network. If there
are two devices with the same MAC address on the same PROFINET network,
communications problems will result.

IP address: Each device must also have an Internet Protocol (IP) address. This address
allows the device to deliver data on a more complex, routed network.

Each IP address is divided into four 8-bit segments and is expressed in a dotted, decimal
format (for example, 211.154.184.16). The first part of the IP address is used for the Network
ID (What network are you on?), and the second part of the address is for the Host ID (unique
for each device on the network). An IP address of 192.168.x.y is a standard designation
recognized as part of a private network that is not routed on the Internet.

Subnet mask: A subnet is a logical grouping of connected network devices. Nodes on a
subnet tend to be located in close physical proximity to each other on a Local Area Network
(LAN). A mask (known as the subnet mask or network mask) defines the boundaries of an IP
subnet.

A subnet mask of 255.255.255.0 is generally suitable for a small local network. This means
that all IP addresses on this network should have the same first 3 octets, and the various
devices on this network are identified by the last octet (8-bit field). An example of this is to
assign a subnet mask of 255.255.255.0 and an IP addresses of 192.168.2.0 through
192.168.2.255 to the devices on a small local network.

The only connection between different subnets is via a router. If subnets are used, an IP
router must be employed.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PROFINET

7.1 Communication with a programming device

IP router: Routers are the link between LANs. Using a router, a computer in a LAN can send
messages to any other networks, which might have other LANs behind them. If the
destination of the data is not within the LAN, the router forwards the data to another network
or group of networks where it can be delivered to its destination.

Routers rely on IP addresses to deliver and receive data packets.

IP addresses
properties: In the
Properties window,
select the "Ethernet
address" configuration
entry. The TIA Portal
displays the Ethernet
address configuration
dialog, which
associates the
software project with
the IP address of the
CPU that will receive
that project.

Eikganel affipiies

of Faopeities %] Infa | 4l Biagnastics

Ethrmrt addin ez
ki, mrred

e Inteaface connecied with

Bobeat tick conwcind

IP paotecal
addrann
Felnay magh

4 A e suslrert

thit e

Note

The CPU does not have a pre-configured IP address. You must manually assign an IP
address for the CPU. If your CPU is connected to a router on a network, you must also enter
the router's IP address. All IP addresses are configured when you download the project.

Refer to "Assigning IP addresses to programming and network devices" for more

information.

The following table defines the parameters for the IP address:

Parameter

Description

Subnet

Name of the Subnet to which the device is connected. Click the "Add new subnet"
button to create a new subnet. "Not connected" is the default.
Two connection types are possible:

e The "Not connected" default provides a local connection.
e A subnet is required when your network has two or more devices.

IP protocol

IP address

Assigned IP address for the CPU

Subnet mask

Assigned subnet mask

Use IP router

Click the checkbox to indicate the use of an IP router

Router address

Assigned IP address for the router, if applicable

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

219

PROFINET

7.1 Communication with a programming device

714 Testing the PROFINET network

After completing the configuration, download the project to the CPU. All IP addresses are
configured when you download the project.

ot g ey o LE 1

damvehle s L o S ol b e

| - e [F— [——

Assigning an |IP address to a device online

The S7-1200 CPU does not have a pre-configured IP address. You must manually assign an
IP address for the CPU.

You can assign an IP address to a device online. However, this IP address is temporary and
will be lost if you power cycle the PLC. Refer to "Assigning a temporary IP address online to
the S7-1200" for this step-by-step procedure.

To permanently assign an IP address, you must configure the IP address in the Device
configuration, save the configuration, and download it to the PLC. Refer to "Configuring a
permanent IP address for the S7-1200 CPU" for more information. An IP address that has
been downloaded as part of the PLC configuration will not be lost on a power cycle of the
PLC. Use "Online access" to display the connected CPU's IP address as shown below.

Note

All configured networks of the programming device are displayed. You must select the
correct network to display the required S7-1200 CPU's IP address.

S7-1200 Programmable controller
220 System Manual, 04/2009, ASE02486680-01

PROFINET
7.1 Communication with a programming device

Devices

152

b] Froject 020809

@ Online access

@ ““_._,__‘_‘-‘-‘.v F - | IreeliEs FROOG0 MT Hepwarl Con H
w _Jj O-Link DUB-E1890 5B 2.0 FastEdh E

fit Update accezzible devices

|y - ._IIF= I-F-: I-é-FE A0 PLC

//-"" % Online & diagnostics
@ [I_-n. Frogram blocks

» [Techrologieobjekes

¥ L SIMATIC Card Reade

©) Second of two Ethernet networks on this programming device
® IP address of the only S7-1200 CPU on this Ethernet network

Using the "Extended download to device" dialog to test for connected network devices

The S7-1200 CPU "Download to device" function and its "Extended download to device"
dialog can show all accessible network devices and whether or not unique IP addresses
have been assigned to all devices. To display all accessible and available devices with their
assigned MAC and IP addresses, check the "Show all accessible devices" checkbox.

[e P T T b
e B g e T
AL PRI G | AR FEEARLE

PR et by g B Sak S LR oA e
8

AR A T o 5t T R

Evis B g4 A4 AT LI Te——
- - il By whd
[e R [LIS P Birw Y T

If the required network device is not in this list, communications to that device have been
interrupted for some reason. The device and network must be investigated for hardware
and/or configuration errors.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 221

PROFINET

7.2 HM/-to-PLC communication

7.2 HMI-to-PLC communication

The CPU supports PROFINET communications connections to HMIs. The following
requirements must be considered when setting up communications between CPUs and
HMls:

Configuration/Setup:
® The PROFINET port of the CPU must be configured to connect with the HMI.
® The HMI must be setup and configured.

® The HMI configuration information is part of the CPU project and can be configured and
downloaded from within the project.

® No Ethernet switch is required for one-to-one communications; an Ethernet switch is
required for more than two devices in a network.

Note

The rack-mounted Siemens CSM1277 4-port Ethernet switch can be used to connect
your CPUs and HMI devices. The PROFINET port on the CPU does not contain an
Ethernet switching device.

Supported functions:
® The HMI can read/write data to the CPU.
® Messages can be triggered, based upon information retrieved from the CPU.

e System diagnostics

Note

WinCC Basic and STEP 7 Basic are components of the TIA Portal. Refer to WinCC Basic
for more information on configuring the HMI.

S7-1200 Programmable controller
222 System Manual, 04/2009, ASE02486680-01

PROFINET
7.2 HMI-to-PL C communication

Required steps in configuring communications between an HMI and a CPU

Step Task
1 Establishing the hardware communications connection

An PROFINET interface establishes the physical connection between an HMI and a CPU. Since Auto-Cross-Over
functionality is built into the CPU, you can use either a standard or crossover Ethernet cable for the interface. An
Ethernet switch is not required to connect an HMI and a CPU.

Refer to "Configuring communications between a programming device and a CPU: Establishing the hardware
communications connection” for more information.

2 Configuring the devices

Refer to "Configuring communications between a programming device and a CPU: Configuring the devices" for
more information.

3 Configuring the logical network connections between an HMI and a CPU

Refer to "Configuring communications between an HMI and a CPU: Configuring the logical network connections
between an HMI and a CPU" for more information.

4 Configuring a permanent IP address
Use the same configuration process; however, you must configure IP addresses for the HMI and the CPU.

Refer to "Configuring communications between a programming device and a CPU: Configuring a permanent IP
address" for more information.

5 Testing the PROFINET network
You must download the configuration for each CPU.

Refer to "Configuring communications between a programming device and a CPU: Testing the PROFINET
network for more information.

See also
Establishing the hardware communications connection (Page 209)
Configuring the devices (Page 209)
Configuring the logical network connections between an HMI and a CPU (Page 223)
Configuring a permanent IP address (Page 218)
Testing the PROFINET network (Page 220)

7.21 Configuring the logical network connections between an HMI and a CPU

After you configure the rack with the CPU , you are now ready to configure your network
connections.

In the Devices and Networks portal, use the "Network view" to create the network
connections between the devices in your project. To create the Ethernet connection, select
the green (Ethernet) box on the CPU. Drag a line to the Ethernet box on the HMI device.
Release the mouse button and your Ethernet connection is joined.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 223

PROFINET

7.3 PLC-to-PLC communication

Action

Result

Select "Network view" to display the
devices to be connected.

Devices & Networks

PLC 1
CPU 2140

ARECEGn - L Relations

HMI_1
HTP1000 Brasic PN

a

Select the port on one device and
drag the connection to the port on
the second device.

Devices & Metworks

FLC 1
CRU 214

R Metworks| 1§ Connections

= 4l Relations

1
KTP1000 Basic PN

k.

Release the mouse button to create
the network connection.

Devices & Metworks

PLC 1
CPU 12140

- I‘.E Relatsons

7.3 PLC-to-PLC communication

A CPU can communicate with another CPU on a network by using the TSEND_C and
TRCV_C instructions. The following must be considered when setting up communications

between two CPUs:

® Configuration/Setup: Hardware configuration is required.

e Supported functions: Reading/Writing data to a peer CPU

® No Ethernet switch is required for one-to-one communications; an Ethernet switch is
required for more than two devices in a network.

224

S7-1200 Programmable controller

System Manual, 04/2009, A5E02486680-01

PROFINET

7.3 PL C-to-PLC communication

Required steps in configuring communications between two CPUs

Step Task

1 Establishing the hardware communications connection

A PROFINET interface establishes the physical connection between two CPUs. Since Auto-Cross-Over
functionality is built into the CPU, you can use either a standard or crossover Ethernet cable for the interface. An
Ethernet switch is not required to connect the two CPUs.

Refer to "Configuring communications between a programming device and a CPU: Establishing the hardware
communications connection" for more information.

2 Configuring the devices
You must configure two projects with a CPU in each project.

Refer to "Configuring communications between a programming device and a CPU: Configuring the devices" for
more information.

3 Configuring the logical network connections between two CPUs

Refer to "Configuring communications between two CPUs: Configuring the logical network connections between
two CPUs (Page 226)" for more information.

4 Configuring a permanent IP address

Use the same configuration process; however, you must configure IP addresses for two CPUs (for example,
PLC_1 and PLC_2).

Refer to "Configuring communications between a programming device and a CPU: Configuring a permanent IP
address" for more information.

5 Configuring transmit (send) and receive parameters
You must configure TSEND_C and TRCV_C instructions in both CPUs to enable communications between them.

Refer to "Configuring communications between two CPUs: Configuring transmit (send) and receive parameters
(Page 226) for more information.

6 Testing the PROFINET network
You must download the configuration for each CPU.

Refer to "Configuring communications between a programming device and a CPU: Testing the PROFINET
network for more information.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 225

PROFINET

7.3 PLC-to-PLC communication

7.3.1

7.3.2

226

Configuring the logical network connections between two CPUs

After you configure the rack with the CPU , you are now ready to configure your network

connections.

In the Devices and Networks portal, use the "Network view" to create the network
connections between the devices in your project. To create the PROFINET connection,
select the green (PROFINET) box on the first PLC. Drag a line to the PROFINET box on the
second PLC. Release the mouse button and your PROFINET connection is joined.

Action

Result

Select "Network view" to display the
devices to be connected.

Praject] = Devices & Metwaiks

o Metwmkwiew [Device dew
g diermarha| [cosnecnns s B EHs =

FE i LR
R B L TP o i
=]

Select the port on one device and
drag the connection to the port on
the second device.

Frojeet]l = Devices & Natwoiks

& Matworkwdew [Device dew

[epmda| L] cosnectizn - B ORL -
+|
PLC Y L
ORI TP
T ——

Release the mouse button to create
the network connection.

2 Metwoikwiew [Device dew
ik Memaris| L] cosnecnens ¢ B s m a

L] A
[= TLFL JTF (0 i

Configuring transmit (send) and receive parameters

Transmission block (T-block) communications are used to establish connections between
two CPUs. Before the CPUs can engage in PROFINET communications, you must configure
parameters for transmitting (or sending) messages and receiving messages. These
parameters dictate how communications operate when messages are being transmitted to or

received from a target device.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PROFINET
7.3 PL C-to-PLC communication

7.3.21 Configuring the TSEND_C instruction transmit (send) parameters

TSEND_C instruction

The TSEND_C instruction (Page 151) creates a communications connection to a partner
station. The connection is set up, established, and automatically monitored until it is
commanded to disconnect by the instruction. The TSEND_C instruction combines the
functions of the TCON, TDISCON and TSEND instructions.

From the Device configuration in the TIA Portal, you can configure how a TSEND_C
instruction transmits data. To begin, you insert the instruction into the program from the
Instructions tab at the following location: "Extended Instructions" > "Communications"

The instruction is displayed, along with the Call options dialog where you assign a DB for
storing the parameters of the TSEND_C instruction.

+ HNetwark 1:

TN

TSEFIDLC
EW B
Jreg DOHE b
= CONT BUSY b
LEW EFROR
COHMECT ETATUS |

DATA
o 0 _RST

rata blosck.

' terme FIEENGEE -
Hamber -

Sangle =

initands Mamual
| AUtomanc

‘ The called lunctgm Block caves a2 datamn it cvnoanitands
data black
More

(=14 Cancel

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 227

PROFINET

7.3 PL C-fo-PLC communication

You can assign tag memory locations to the inputs and outputs as in the figure below.

* Metwork 1:
et

THEMD_C_DE”

TeEND_C
£ N
Tag_t = FEQ DONE -4 “Tag_b*
Tag 2 = CONT BUSK w Teg_ T
LA 1 ™
Tap ¥ — LN ERROR 4 Tag &
-
STATS o “Tag

Cannigh ':--'._[t!:

COMNELT
BATWT §
Teg 4" - DATA

BAED 3
Tag_5 = COM_RST

Configuring General parameters

You specify the communication parameters in the Properties configuration dialog of the
TSEND_C instruction. This dialog appears near the bottom of the page whenever you have
selected any part of the TSEND_C instruction.

Configuring Connection parameters

Every CPU has an integrated PROFINET port, which supports standard PROFINET
communications. The supported Ethernet protocols are described in the following two
connection types:

Protocol | Protocol Name Usage

RFC ISO Transport over TCP Message fragmentation and re-assembly
1006

TCP Transport Connection Protocol Transport of frames

ISO Transport over TCP (RFC 1006)

ISO Transport over TCP is a mechanism that enables ISO applications to be ported to the
TCP/IP network. This protocol has the following features:

e An efficient communications protocol closely tied to the hardware
e Suitable for medium-sized to large data amounts (up to 8192 bytes)

® |n contrast to TCP, the messages feature an end-of-data identification and are message-
oriented.

® Routing-capable; can be used in WAN
® Dynamic data lengths are possible.

® Programming effort is required for data management due to the SEND / RECEIVE
programming interface.

S7-1200 Programmable controller
228 System Manual, 04/2009, ASE02486680-01

PROFINET

7.3 PL C-to-PLC communication

Using Transport Service Access Points (TSAPs), TCP protocol allows multiple connections
to a single IP address (up to 64K connections). With RFC 1006, TSAPs uniquely identify
these communication end point connections to an IP address.

In the "Address Details" section of the Connection Parameters dialog, you define the TSAPs
to be used. The TSAP of a connection in the CPU is entered in the "Local TSAP" field. The
TSAP assigned for the connection in your partner CPU is entered under the "Partner TSAP"

field.
i Pepevmen %] lale |) Duspeis
Vel Prafjatind
T e i e Il TR
IR .
Lrapvad
L Py
Tl L r
rratan R LM ey) = U P e] =
T 1 L] 1 L]
L i
[

ik ik 1

Tovacar tos

Addewnn_Dwissy
L 3 Fuirwe T
TEAR R
Hiad e

The parameters to configure are defined below:

Parameter | Definition

General

End point: Partner Name assigned to the partner (receiving) CPU
Interface Name assigned to the interfaces

Subnet Name assigned to the subnets

Address Assigned IP Addresses

Connection type Type of Ethernet protocol

Connection ID ID number

Connection data Local and Partner CPU data storage location

Active connection setup | Radio button to select Local or Partner CPU as the active connection
Address details

TSAP (ASCII) Local and Partner CPU TSAPs in ASCII format

TSAP ID Local and Partner CPU TSAPs in hexadecimal format

Transport Connection Protocol (TCP)

TCP is a standard protocol described by RFC 793: Transmission Control Protocol. The
primary purpose of TCP is to provide reliable, secure connection service between pairs of
processes. This protocol has the following features:

® An efficient communications protocol since it is closely tied to the hardware

e Suitable for medium-sized to large data amounts (up to 8192 bytes)

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 229

PROFINET

7.3 PL C-fo-PLC communication

® Provides considerably more facilities for applications, notably:
— Error recovery
— Flow control
— Reliability
® A connection-oriented protocol
® Can be used very flexibly with third-party systems which exclusively support TCP
® Routing-capable
e Only static data lengths are applicable.
® Messages are acknowledged.
® Applications are addressed using port numbers.
® Most of the user application protocols, such as TELNET and FTP, use TCP.

® Programming effort is required for data management due to the SEND / RECEIVE
programming interface.

o Pagesinen (%] ale | by Duspuifacs
...... [T ee——
L T R R —
P ——
Canuas
(] s
[T ny - -
e CPrn Skl B T} T e
et w1 = new_n -
L] 1 1
Ea e b . -
Carascian
[e n - - ! Y -
B BT (s AR (e s B
Aula-ii,_Duaais
Lt ot Fatean W
s et

The parameters to configure are defined below:

Parameter Definition

General

End point: Partner Name assigned to the partner (receiving) CPU
Interface Name assigned to the interfaces

Subnet Name assigned to the subnets

Address Assigned IP Addresses

Connection type Type of Ethernet protocol

Connection ID ID number

Connection data Local and Partner CPU data storage location
Active connection setup | Radio button to select Local or Partner CPU as the active connection
Address details

Port (decimal) Partner CPU Port in decimal format

S7-1200 Programmable controller
230 System Manual, 04/2009, ASE02486680-01

PROFINET
7.3 PL C-to-PLC communication

7.3.2.2 Configuring the TRCV_C instruction receive parameters

TRCV_C instruction

The TRCV_C instruction (Page 151) creates a communications connection to a partner
station. The connection is set up, established, and automatically monitored until it is
commanded to disconnect by the instruction. The TRCV_C instruction combines the
functions of the TCON, TDISCON, and TRCYV instructions.

From the CPU configuration in the TIA Portal, you can configure how a TRCV_C instruction
receives data. To begin, you insert the instruction into the program from the Instructions tab
at the following location: "Extended Instructions" > "Communications”

The instruction is displayed, along with the Call options dialog where you assign a DB for
storing the parameters of the TRCV_C instruction.

w» Hebwork 2z

OV C
BN)
JEH_R DOHE 1y
o COMT BUST
LEHW ERROE by
COMMECT STATUS |
BATA ROVD_LEM |

= COM_RST

rata blosck.

' Meme NG -
Hamber -

Sangle =

initands Mamual
| AUtomanc

‘ The called lunctgm Block caves a2 datamn it cvnoanitands
data black
More

oK Cancel

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 231

PROFINET

7.3 PL C-fo-PLC communication

You can assign tag memory locations to the inputs and outputs as in the figure below:

* Hebwark 2:

Coanment

ROV _L_Od
TR
ER End
. a4
Tag_10¢ = EN_R DOKE & “Tag_15
TR M1 5
Tag_ 10" = DONT BUSY w “Tap_16°
LW | A1
Tag 12" - LEN ERR0R - Tag 17
.. AT D
e STATUS - “Tag_15
Connscen_B LT ¥
- CoHNEeT REVD_LEM = Tap_17
WAL
Tag 15 — BATA
wamy g
Tag_14" = COM_RET

Configuring the General parameters

You specify the communication parameters in the Properties configuration dialog of the
TRCV_C instruction. This dialog appears near the bottom of the page whenever you have
selected any part of the TRCV_C instruction.

Configuring the Connection parameters

Every CPU has an integrated PROFINET port, which supports standard PROFINET
communications. The supported Ethernet protocols are described in the following two
connection types:

Protocol | Protocol Name Usage

RFC ISO Transport over TCP Message fragmentation and re-assembly
1006

TCP Transport Connection Protocol Transport of frames

ISO Transport over TCP (RFC 1006)

ISO Transport over TCP is a mechanism that enables ISO applications to be ported to the
TCP/IP network. This protocol has the following features:

® An efficient communications protocol closely tied to the hardware
e Suitable for medium-sized to large data amounts (up to 8192 bytes)

® |n contrast to TCP, the messages feature an end-of-data identification and are message-
oriented.

® Routing-capable; can be used in WAN
e Dynamic data lengths are possible.

® Programming effort is required for data management due to the SEND / RECEIVE
programming interface.

S7-1200 Programmable controller
232 System Manual, 04/2009, ASE02486680-01

PROFINET

7.3 PL C-to-PLC communication

Using Transport Service Access Points (TSAPs), TCP protocol allows multiple connections
to a single IP address (up to 64K connections). With RFC 1006, TSAPs uniquely identify
these communication end point connections to an IP address.

In the "Address Details" section of the Connection Parameters dialog, you define the TSAPs
to be used. The TSAP of a connection in the CPU is entered in the "Local TSAP" field. The
TSAP assigned for the connection in your partner CPU is entered under the "Partner TSAP"
field.

i Papaiman |] Bale | 8 Duspuinies
Garial Waalip s

s i — ~-

o8

EEr

Carr b

Tamrin G

Fakwiet Prle , v ' o v s, C =

e LT L) B Bl e L

Agdmran_(ieiada

AR P
]

The parameters to configure are defined below:

Parameter | Definition

General

End point: Partner Name assigned to the partner (receiving) CPU
Interface Name assigned to the interfaces

Subnet Name assigned to the subnets

Address Assigned IP Addresses

Connection type Type of Ethernet protocol

Connection ID ID number

Connection data Local and Partner CPU data storage location

Active connection setup | Radio button to select Local or Partner CPU as the active connection
Address details

TSAP (ASCII) Local and Partner CPU TSAPs in ASCII format

TSAP ID Local and Partner CPU TSAPs in hexadecimal format

Transport Connection Protocol (TCP)

TCP is a standard protocol described by RFC 793: Transmission Control Protocol. The
primary purpose of TCP is to provide reliable, secure connection service between pairs of
processes. This protocol has the following features:

e An efficient communications protocol since it is closely tied to the hardware

e Suitable for medium-sized to large data amounts (up to 8192 bytes)

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 233

PROFINET

7.3 PL C-fo-PLC communication

234

® Provides considerably more facilities for applications, notably:

— Error recovery
— Flow control
— Reliability

® A connection-oriented protocol

® Can be used very flexibly with third-party systems which exclusively support TCP

® Routing-capable

e Only static data lengths are applicable.

® Messages are acknowledged.

® Applications are addressed using port numbers.

® Most of the user application protocols, such as TELNET and FTP, use TCP.

® Programming effort is required for data management due to the SEND / RECEIVE

programming interface.

evesea s
Levrmes &
Garrw e i =
Blwn it R i

Adadrrns_{hrl sia
Latsd Pyl

EEar e

The parameters to configure are defined below:

Parameter | Definition

General

End point: Partner Name assigned to the partner (receiving) CPU

Interface Name assigned to the interfaces

Subnet Name assigned to the subnets

Address Assigned IP Addresses

Connection type Type of Ethernet protocol

Connection ID ID number

Connection data Local and Partner CPU data storage location

Active connection setup | Radio button to select Local or Partner CPU as the active connection

Address details

Port (decimal) Local CPU Port in decimal format

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

PROFINET

7.4 Reference Information

7.4 Reference Information

741 Locating the Ethernet (MAC) address on the CPU

In PROFINET networking, a Media Access Control address (MAC address) is an identifier
assigned to adapter cards by the manufacturer for identification. A MAC address usually
encodes the manufacturer's registered identification number.

The standard (IEEE 802.3) format for printing MAC addresses in human-friendly form is six
groups of two hexadecimal digits, separated by hyphens (-) or colons (:), in transmission
order, (for example, 01-23-45-67-89-ab or 01:23:45:67:89:ab).

All devices must have a unique MAC address if on the same PROFINET network. If there
are two devices with the same MAC address on the same PROFINET network,
communications problems will result.

Note

Each CPU is loaded at the factory with a permanent, unique MAC address. You cannot
change the MAC address of a CPU.

MAC address on the CPU

The MAC address is printed on the front, lower-left corner of the CPU. Note that you have to
lift the lower TB doors to see the MAC address information.

L.l
ramee | B
=von |0
ANt O
- i}
—

HEIIIAIAT DAIIAN S
B BB

ESD SENSITIVE| AR
I HH. JUUUUpS i e |
O | l' _

0] MAC address

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 235

PROFINET
7.4 Reference Information

Using MAC addresses to identify network devices

Initially, the CPU has no IP address, only a factory-installed MAC address. PROFINET
communications requires that all devices be assigned a unique IP address. You can use the
CPU "Download to device" function and its "Extended download to device" dialog to show all
accessible network devices and ensure that unique IP addresses have been assigned to all
devices. This dialog displays all accessible and available devices with their assigned MAC
and IP addresses. MAC addresses are all-important in identifying devices that are missing
the required unique IP address.

gl Eneis saiey o WL 1T

O e L e T P

-

| Eapcw B 14 et 1EE e B e

7.4.2 Configuring Network Time Protocol synchronization

The Network Time Protocol (NTP) is widely used to synchronize the clocks of computer
systems to Internet time servers. It provides accuracies typically less than a millisecond on
LANs and up to a few milliseconds on WANSs. Typical NTP configurations utilize multiple
redundant servers and diverse network paths in order to achieve high accuracy and
reliability.

The NTP subnet operates with a hierarchy of levels, where each level is assigned a number
called the stratum. Stratum 1 (primary) servers at the lowest level are directly synchronized

to national time services. Stratum 2 (secondary) servers at the next higher level are
synchronized to stratum 1 servers and so on.

S7-1200 Programmable controller
236 System Manual, 04/2009, ASE02486680-01

PROFINET

7.4 Reference Information

Time synchronization parameters

In the Properties window, select the "Time synchronization" configuration entry. The TIA
Portal displays the Time synchronization configuration dialog:

o Propemties ‘_l,.' L1 5] :\;d [Hagiastics
General
Geneisl Time synchronization
Ethermat addissies
» Afvanced
Tirree Synechignizatsd " Enable time-chday synchroncaten wiing HIF seroers
Server 1l | 192 168 2]
SereerE | 192 14 2
Jerver 3| 197 168 by
Serverdl | 192 a2 o
" Timse synchrencaten marval | 10 Be
Note

All IP addresses are configured when you download the project.

The following table defines the parameters for time synchronization:

Parameter Definition

Enable time-of-day Click the checkbox to enable time-of-day synchronization using
synchronization using Network NTP servers.

Time Protocol (NTP) servers

Server 1 Assigned IP Address for network time server 1

Server 2 Assigned IP Address for network time server 2

Server 3 Assigned IP Address for network time server 3

Server 4 Assigned IP Address for network time server 4

Time synchronization interval Interval value (sec)

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 237

PROFINET

7.4 Reference Information

S7-1200 Programmable controller
238 System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications 8

The CPU supports the Point-to-Point protocol (PtP) for character-based serial
communication, in which the user application completely defines and implements the
protocol of choice. PtP provides maximum freedom and flexibility, but requires extensive
implementation in the user program.

PtP enables a wide variety of possibilities:

¢ The ability to send information directly to
an external device such as a printer

e The ability to receive information from
other devices such as barcode readers,
RFID readers, third-party camera or vision
systems, and many other types of devices

¢ The ability to exchange information,
sending and receiving data, with other
devices such as GPS devices, third-party
camera or vision systems, radio modems,
and many more

|
n

PtP communication is serial communication that uses standard UARTSs to support a variety
of baud rates and parity options. The RS232 or RS485 communication module (CM)
provides the electrial interface for performing the PtP communications.

The TIA Portal provides libraries of instructions that you can use in programming your
application. These libraries provide PtP communication functions for the following protocols:

e USS drive protocol
® Modbus RTU Master Protocol
® Modbus RTU Slave Protocol

Using the RS232 and RS485 communication modules

Two communication modules (CMs) provide the interface for PtP communications:
e CM 1241 RS485 (Page 320)
e CM 1221 RS232 (Page 321)

You can connect up to three CMs (of any type). Install the CM to the left of the CPU or
another CM. Refer to the "Installation" chapter (Page 27) for detailed instructions on module
installation and removal.

The RS232 and RS485 communication modules have the following characteristics:
® |solated port

® Supports Point-to-Point protocols

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 239

Point-fo-Point (PfP) communications

8.2 Configuring the communication ports

8.2

240

® Configured and programmed through extended instructions and library functions

e Displays transmit and receive activity by means of LEDs

e Displays a diagnostic LED

® Powered by the CPU. No external power connection is needed.

Refer to the Technical Specifications for Communication Modules (Page 320).

Configuring the communication ports

After configuring the hardware devices (Page 63) , you configure parameters for the
communication interfaces by selecting one of the CMs in your rack.

The "Properties" tab of the inspector
window displays the parameters of
the selected CM. Select "Port
configuration" to edit the following
parameters:

e Baud rate

. of Properties (%] Info |) Diagnestio
° Parlty GEneEral
e Number of stop bits 4 e, Fart sord guor g
e Flow control (RS232 only) ——— -
e Wait time T [— .
Except for flow control, the port e e ;
configuration parameters are the .
same regardless of whether you are
configuring an RS232 or an RS485 S

communication module. The
parameter values may differ.

The port can also be configured (or the existing configuration can be changed) from the user
program with the PORT_CFG (Page 252) instruction.

Note

Parameter values set from the PORT_CFG instruction in the user program override port
configuration settings set from the TIA Portal. Note that the S7-1200 does not retain
parameters set from the PORT_CFG instruction in the event of power down, or any loss of

power.

Baud rate: The default value for the baud rate is 9.6 kbits per second. Valid choices are:

300 baud 2.4 kbits
600 baud 4.8 kbits
1.2 kbits 9.6 kbits

19.2 kbits
28.4 kbits
57.6 kbits

76.8 kbits
115.2 kbits

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.3 Managing flow confrol

Parity: The default value for parity is no parity. Valid choices are:

® No parity

® Even

e Odd

® Mark (parity bit always set to 1)

® Space (parity bit always set to 0)

Number of stop bits: The number of stop bits can be either one or two. The default is one.

Flow control: For the RS232 communication module, you can select either hardware or
software flow control, as described in the section "Managing flow control (Page 241)". If you
select hardware flow control, you can select whether the RTS signal is always on, or RTS is
switched. If you select software flow control, you can define the ASCII characters for the
XON and XOFF characters.

The RS485 communication module does not support flow control.

Wait time: You specify the wait time in milliseconds. The range is 0 to 65535 milliseconds.
The wait time specifies the time that the communication module waits to receive CTS after
asserting RTS, or for receiving an XON after receiving an XOFF, depending on the type of
flow control. If the wait time expires before the communication module receives an expected
CTS or XON, the communication module aborts the transmit operation and returns an error
to the user program.

8.3 Managing flow control

Flow control refers to a mechanism for balancing the sending and receiving of data
transmissions so that no data is lost. Flow control ensures that a transmitting device is not
sending more information than a receiving device can handle. Flow control can be
accomplished through either hardware or software. The RS232 CM supports both hardware
and software flow control. The RS485 CM does not support flow control. You specify the
type of flow control when you configure the port (Page 240).

Hardware flow control: RTS switched

Hardware flow control works through the Request-to-send (RTS) and Clear-to-send (CTS)
communication signals. With the RS232 CM, the RTS signal is output from pin 7 and the
CTS signal is received through pin 8.

If you enable RTS switched hardware flow control for an RS232 CM, the module sets the
RTS signal active to send data. It monitors the CTS signal to determine whether the
receiving device can accept data. When the CTS signal is active, the module can transmit
data as long as the CTS signal remains active. If the CTS signal goes inactive, then the
transmission must stop.

Transmission resumes when the CTS signal becomes active. If the CTS signal does not
become active within the configured wait time, the module aborts the transmission and
returns an error to the user program. You specify the wait time in the port configuration
(Page 240).

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 241

Point-fo-Point (PfP) communications
8.4 Configuring the transmit (send) and receive parameters

Hardware flow control: RTS always on

In another implementation, the transmitting device sets RTS active by default. A device such
as a modem monitors the RTS signal from the CM and utilizes this signal as a clear-to-send.
With this implementation, the modem only transmits to the CM when RTS is active. If RTS is
inactive, the module does not transmit to the CM.

To allow the modem to send data to the CM at any time, configure "RTS always on"
hardware flow control. The CM thus sets the RTS signal active all the time. The CM will not
set RTS inactive even if the module cannot accept characters. The transmitting device must
ensure that it does not overrun the receive buffer of the CM. The modem can then transmit
data at any time, and does not monitor a CTS signal from the receiver. The transmitting
device must monitor its own transmissions, by limiting the number of message frames or
characters that it sends to prevent the receive buffer from overflowing. If the receive buffer
does overflow, the transmitting device must discard the received message and return an
error to the user program.

Data Terminal Block Ready (DTR) and Data Set Ready (DSR) signal utilization

The CM sets DTR active for either type of hardware flow control. The module transmits only
when the DSR signal becomes active. The state of DSR is only evaluated at the start of the
send operation. If DSR becomes inactive after transmission has started, the transmission will
not be paused.

Software flow control

Software flow control uses special characters in the messages to control message
transmissions. These characters are ASCII characters that represent XON and XOFF.

XOFF indicates that a transmission must stop. XON indicates that a transmission can
resume.

When the transmitting device receives an XOFF character from the receiving device, it stops
transmitting. Transmitting resumes when the transmitting device receives an XON character.
If it does not receive an XON character within the wait time that is specified in the port
configuration (Page 240) , the CM aborts the transmission and returns an error to the user
program.

Software flow control requires full-duplex communication, as the receiving partner must be
able to send XOFF to the transmitting partner while a transmission is in progress.

8.4 Configuring the transmit (send) and receive parameters

Before the PLC can engage in PtP communications, you must configure parameters for
transmitting (or sending) messages and receiving messages. These parameters dictate how
communications operate when messages are being transmitted to or received from a target
device.

S7-1200 Programmable controller
242 System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.4 Configuring the transmit (send) and receive parameters

Configuring the transmit (send) parameters
During the configuration of Gannral
the CM, you configure howa = Transmit message configuation
communication interface OCSIIETIETET) | Transemt optient
transmits data by specifying S abr

the "Transmit message
configuration" property
the selected CM.

You can also dynamical

Sesid ek GLmEiape ET

for

ly configure or change the transmit message parameters from the

user program by using the SEND_CFG (Page 254) instruction.

Note

Parameter values set from the SEND_CFG instruction in the user program override the port
configuration settings. Note that the CPU does not retain parameters set from the
SEND_CFG instruction in the event of power down, or any loss of power

Parameter

Definition

RTS On delay

Specifies the amount of time to wait after activating RTS before
transmission is initiated. The range is 0 to 65535 ms, with a default value of
0. This parameter is valid only when the port configuration (Page 240)
specifies hardware flow control. CTS is evaluated after the RTS On delay
time has expired.

This parameter is applicable for RS232 modules only.

RTS Off delay

Specifies the amount of time to wait before de-activating RTS after
completion of transmission. The range is 0 to 65535 ms, with a default
value of 0. This parameter is valid only when the port configuration
(Page 240) specifies hardware flow control.

This parameter is applicable for RS232 modules only.

Send break at message
start

Number of bit times in a
break

Specifies that upon the start of each message, a break will be sent after the
RTS On delay (if configured) has expired and CTS is active.

You specify how many bit times constitute a break where the line is held in
a spacing condition. The default is 12 and the maximum is 65535, up to a
limit of eight seconds.

Send idle line after a
break

Idle line after a break

Specifies that an idle line will be sent after a break at message start. The
"Idle line after a break" parameter specifies how many bit times constitute
an idle line where the line is held in a marking condition. The default is 12
and the maximum is 65535, up to a limit of eight seconds.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

243

Point-fo-Point (PfP) communications

8.4 Configuring the transmit (send) and receive parameters

Configuring the Receive parameters

From the device configuration, you geai
configure how a communication Recebe mavsags configuration

Bl cerfigurabian

interface receives data, and how it Tassme mannage condg. | Mewsag st
recognizes both the start of and the '
end of a message. Specify these) e el R
parameters in the Receive rcageioe maKEsge WNT e g bugt
message configuration for the i e e e o

TRNIT O iy O RCTR

selected CM. . e e R AN

You can also dynamically configure

or change the receive message it calon ik g Pl Y K ok ST

parameters from the user program
by using the RCV_CFG instruction.

Note

Parameter values set from the RCV_CFG instruction in the user program override port
configuration settings set from the TIA Portal. Note that the S7-1200 does not retain
parameters set from the RCV_CFG instruction in the event of power down, or any loss of

power

Message start parameters

244

You can determine how the communication interface recognizes the start of a message. The
start characters and characters comprising the message go into the receive buffer until a

configured end condition is

met.

You can configure multiple message start conditions. If any one of the configured conditions

occurs, the message starts.

The parameters to configure are defined below:

Parameter

Definition

Start on any character

Specifies that any character indicates the start of a message. Start on
any character is set by default.

Start on special condition

Specifies that a particular condition that you select indicates the start of
a message. You can configure multiple special conditions. The order of
evaluation is:

e Idleline
e Line break
e Start with single character or sequence

Special condition:

Recognize message start
with line break

Specifies that the receiver recognizes a line break when the receive
data line is driven to a spacing condition for more than a character time,
and that this condition indicates the start of a message.

Special condition:

Recognize message start
with idle line

Specifies that the beginning of a message is indicated by an idle line
condition for a specified number of bit times, followed by some other
condition such as receipt of any character. The default is 40 bit times
and the maximum is 65535, up to a limit of eight seconds.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.4 Configuring the transmit (send) and receive parameters

Parameter

Definition

Special condition:

Recognize message start
with single character

Specifies that a particular character indicates the start of a message.
The default is STX.

Special condition:

Recognize message start
with a character sequence

Specifies that a particular character sequence indicates the start of a
message. For each sequence, you can specify up to five characters.
For each character position, you specify either a specific hex character,
or that the character is ignored in sequence matching.

Incoming sequences will be evaluated against the configured start
conditions until a start condition has been satisfied. Once the start
sequence has been satisfied, evaluation of end conditions begins.

You can configure up to five specific character sequences, which you
can enable or disable as needed. The start condition is satisfied when
any one of the configured character sequences occurs. A sample
configuration is shown below:

o REOEgAET Sl sage ibe =th q thasacel Jesutnie

Wusber ol charatter sequesces o debne:

S-chaiacter mesiage (Lail sequences
Message el sequeesie |

dheck s charemer

ey poned value fHEX). A
haramer valee (ASC0

MIERSRGE FNT BEquescE 2
Chack as charsmen - -
T gt valsse LK) A A
Charemar yales (A0

With this configuration, the start condition is satisfied when either

pattern occurs:

¢ When a five-character sequence is received where the first
character is Ox6A and the fifth character is 0x1C. The characters at
positions 2, 3, and 4 can be any character with this configuration.
After the fifth character is received, evaluation of end conditions
begins.

e When two consecutive 0x6A characters are received, preceded by
any character. In this case, evaluation of end conditions begins after
the second Ox6A is received. The character preceding the first OX6A
is included in the start condition.

Example sequences that would satisfy this start condition:

e <any character> 6A 6A

e 6A1214181C

e G6A44A5D21C

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

245

Point-fo-Point (PfP) communications

8.4 Configuring the transmit (send) and receive parameters

Message end parameters

246

You can also configure how the communication interface recognizes the end of a message.
You can configure multiple message end conditions. If any one of the configured conditions
occurs, the message ends.

Parameter

Definition

Recognize message
end by message
timeout

The message end occurs when the configured amount of time to wait for
message end has expired. The message timeout period begins when the
first character is received according to the message start criteria. The
default is 200 ms and the range is 0 to 65535 ms.

Recognize message
end by response
timeout

The message end occurs when the configured amount of time to wait for a
response expires before a valid start sequence is received. The response
timeout period begins when a transmission ends. The default response
timeout is 200 ms and the range is 0 to 65535 ms. You must configure
another end condition to indicate the actual end of a message.

Recognize message
end by inter-character
gap

The message end occurs when the maximum configured timeout between
consecutive characters of a message has expired. The default value for the
inter-character gap is 12 bit times and the maximum number is 65535 bit
times, up to a maximum of eight seconds.

Recognize message
end by max length

The message end occurs when the configured maximum number of
characters has been received. Valid characters will be included in the
message if another end condition occurs regardless of whether the
maximum length has been reached. The default is 0 bytes and the
maximum is 1024 bytes.

Read message length
from message

The message itself specifies the length of the message. The message end
occurs when a message of the specified length has been received. The
method for specifying and interpreting the message length is described
below.

Recognize message
end with a character

The message end occurs when a specified character is received.

Recognize message
end with a character
sequence

The message end occurs when a specified character sequence is received.
You can specify a sequence of up to five characters. For each character
position, you specify either a specific hex character, or that the character is
ignored in sequence matching.

Leading characters that are ignored characters are not part of the end
condition. Trailing characters that are ignored characters are part of the
end condition. Configuration for one such sequence is shown below:

o+ Megtgeie =asiage ool mth afhasaites edunnie

S-chatacter mesiage end sequence
Lheck i chammer - -
SRt hig (M) Th Th
Chsrammer wabes (AO0

In this case, the end condition is satisfied when two consecutive 0x7A
characters are received, followed by any two characters. The character
preceding the Ox7A Ox7A pattern is not part of the end character sequence.
Two characters following the Ox7A 0x7A pattern are required to terminate
the end character sequence. The values at character positions 4 and 5 are
irrelevant, but they must be received to satisfy the end condition.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.4 Configuring the transmit (send) and receive parameters

Specification of message length within the message

When you select the special condition where the message length is included in the message,
you must provide three parameters that define information about the message length.

+ Read messags length from message

The actual message structure varies

. B Odfset of length field in rmassage: 2 bt s
according to the protocol in use. The Tt B 5
three parameters are as fOHOWS: Drata following bength field not counted in mezzage langth: 0 bytes

® n: the character position (1-based) within the message that contains the length specifier
® | ength size: The number of bytes (one, two, or four) that contain the length specifier

® [ength m: the number of characters following the length specifier that are not included in
the length count

These fields appear as follows in the Receive message configuration of the device
properties:

Example 1: Consider a message structured according to the following protocol:

STX | Len Characters 3 to 14 counted by the length
(n) | ADR PKE INDEX PWD STW HSW | BcC
1 2 3 4 5 6 7 8 9 10 11 12 13 |14
STX [Ox0C | xx XXXX XXXX XXXX XXXX XXXX XX

Configure the receive message length parameters for this message as follows:

® n =2 (The message length is in byte 2.)

® | ength size = 1 (The message length is defined in one byte.)

® [ength m =0 (There are no additional characters following the length specifier that are
not counted in the length count. Twelve characters follow the length specifier.)

In this example, the characters from 3 to 14 inclusive are the characters counted by Len (n).

Example 2: Consider another message structured according to the following protocol:

SD1 Len Len SD2 Characters 5 to 10 counted by length FCS ED
(M | (n DA | SA | FA Data unit=3 bytes

1 2 3 4 5 6 7 8 9 10 11 12

XX 0x06 | 0x06 XX XX XX XX XX XX XX XX XX

Configure the receive message length parameters for this message as follows:

® n =3 (The message length is in byte 3.)

® |ength size = 1 (The message length is defined in one byte.)

® |ength m = 3 (There are three characters following the length specifier that are not
counted in the length. In the protocol of this example, the characters SD2, FCS, and ED
are not counted in the length count. The other six characters are counted in the length
count; therefore the total number of characters following the length specifier is nine.)

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

247

Point-fo-Point (PfP) communications
8.5 Programming the PP communications

In this example, the characters from 5 to 10 inclusive are the characters counted by Len (n).

8.5 Programming the PtP communications

The TIA Portal provides extended instructions that enable the user program to perform Point-
to-Point communications for any of the Siemens Provided Protocols and for the Freeport
protocol. These instructions can be considered in two categories:

e Configuration instructions

e Communication instructions

Configuration instructions

Before your user program can engage in PtP communication, you must configure the
communication interface port, and parameters for sending data and receiving data.

You can perform the port configuration and message configuration for e PORT_CFG
each communication module through the device configuration or e SEND _CFG
through these instructions in your user program: e RCV CFG

Communication instructions

The PtP communication instructions enable the user program to send messages to and
receive messages from the communication modules.

The communication modules in turn send messages to and receive o SEND_PTP
messages from the actual point-to-point devices. The message e RCV_PTP
protocol is in a buffer that is either received from or sent to a specific

communication port.

All of the PtP functions operate asynchronously. The user program can use a polling
architecture to determine the status of transmissions and receptions. SEND_PTP and
RCV_PTP can execute concurrently. The communication modules buffer the transmit and
receive messages as necessary up to a maximum buffer size of 1024 bytes.

Additional instructions provide the capability to reset the receive buffer, ¢ RCV_RST
and to get and set specific RS232 signals. e SGN _GET

e SGN_SET

8.5.1 Polling architecture

To implement a polling architecture, the user program must check the status of each
message it sends or receives. The main program thread typically executes the polling
sequence.

S7-1200 Programmable controller
248 System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.5 Programming the PP communications

Polling architecture: master

The typical polling sequence for a master is as follows:

1.
2.

A SEND_PTP instruction initiates a transmission to the communication module.

Repeated SEND_PTP instructions monitor the status of the transmission and obtain the
current status.

After the status indicates that the transmission is complete, application-specific
instructions prepare for the anticipated response to the message that was transmitted.

A RCV_PTP instruction repeatedly checks for a response to the transmission. The status
will be set and the receive buffer will contain the received message after the end
condition is met that signals the completion of the reception.

Polling architecture: slave
The typical polling sequence for a slave is as follows:

1.

2.

3.

A RCV_PTP instruction awaits a transmission from the master that can be recognized by
a configured start condition.

After the end condition is met that indicates that the reception is complete, application-
specific instructions process the message that was received, and prepare a response to
send.

A SEND_PTP instruction transmits the response to the master.

The slave must be responsible for calling RCV_PTP frequently enough to receive a
transmission from the master before the master times out while waiting for a response. To
accomplish this task, the user program can call RCV_PTP from a cyclic OB, where the cycle
time is sufficient to receive a transmission from the master before the timeout period expires.
If you set the cycle time for the OB to provide for two executions within the timeout period of
the master, the user program should receive transmissions without missing any.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 249

Point-fo-Point (PfP) communications
8.6 Point-to-Point instructions

8.6 Point-to-Point instructions

8.6.1 Common parameters for Point-to-Point instructions

Communication module LED behaviors
There are three LED indicators on the Communication module (CM):

e Diagnostic LED
The Diagnostic LED will flash red until it is addressed by the CPU. After the CPU powers
up, it will check for modules and address the CM module. The Diagnostic LED will begin
to flash green. This means that the CPU has addressed the CM, but has not yet provided
configuration to the CM. The configuration is downloaded to the module when the
program is downloaded to the CPU. After a download to the CPU, the Diagnostic LED on
the communication module should be a steady green.

® Transmit LED
The transmit LED is located above the receive LED. The transmit LED will light when
data is being transmitted out the communication port.

® Receive LED
This LED will light when data is being received by the communication port.

Bit time resolution

Several parameters are specified in a number of bit times. All parameters that are in units of
bit times can be specified to a maximum number of 64000. However, the maximum of
amount of time that can be measured by a S7-1200 is 8 seconds.

REQ input parameter

Many of the Point-to-Point (PtP) instructions use a REQ input that initiates the operation on a
low to high transition. The REQ input must be high (TRUE) for one execution of an
instruction, but the REQ input can remain TRUE for as long as desired. The instruction will
not initiate another operation until it is called with the REQ input FALSE so that the
instruction can reset the history state of the REQ input. This is required so that the
instruction can detect the low to high transition to initiate the next operation.

When you place a PtP instruction, you are prompted to identify the instance DB. Use a
unique DB for each type of PtP instruction. That is, all SEND_PTP instructions should have
the same instance DB, but SEND_PTP and RCV_PTP must have different instance DBs.
This ensures that inputs such as the REQ are properly handled by each instruction.

PORT input parameter

Select from the drop down menu (associated with the PORT input) the port identifier for the
CM that you want this instance of the instruction to operate. This number is also found as the
"hardware identifier" in the configuration information for the CM.

S7-1200 Programmable controller
250 System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.6 Point-to-Point instructions

NDR, DONE, ERROR, and STATUS output parameters

® The output DONE indicates that the requested operation has completed without error.
This output will be set for one scan.

e The output NDR (New Data Ready) indicates that the requested action has completed
without error and new data has been received. This output will be set for one scan.

® The output ERROR indicates that the requested action has completed with an error. This
output will be set for one scan.

® The output STATUS is used to report errors or intermediate status results.
— If the DONE or NDR bit is set, then STATUS will be set to 0.
— Ifthe ERROR bit is set, then STATUS will be set to an error code.

— If none of the above bits are set, then the instruction execution can return intermediate
status results that describe a current state of the function.

STATUS parameter data organization
For general errors:

5] | [1 [[Tsefz] | Jals] | Jo
1 Parameter number 0 Event number

For PtP specific errors:

5] | [1 [| Jelz] [Jals] | Jo
1 0 1 Error class Error number

For status information:

s [[[[| [efz] [[ala] [o

0 Status codes

Common condition codes

STATUS Description

(W#16#....)
0000 No error
8x3A lllegal pointer in parameter x
8070 All internal instance memory in use
8080 Port number is illegal
8081 Timeout, module error, or other internal error
8082 Parameterization failed because parameterization is in progress in background

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 251

Point-fo-Point (PfP) communications

8.6 Point-to-Point instructions

STATUS
(WH#16#....)

Description

8083

Buffer overflow:

The CM returned a received message with a length greater than the length
parameter allowed.

8090

Wrong message length, wrong submodule, or illegal message

8091

Wrong version in parameterization message

8092

Wrong record length in parameterization message

8.6.2 PORT_CFG instruction

PORT_CFG (Port Configuration) allows you to change port parameters such as baud rate
from your program.

Set up the initial static configuration of the port in the Hardware configuration properties.
Execute the PORT_CFG instruction in your program to change the configuration. The
PORT_CFG dynamic configuration changes are not permanently stored in the PLC.

LAD
“FOAT,_CFG_
DE"
PORT_CFG |

-EN END =

- REQ DOME H

{PORT ERROR 4

{PROTOCOL STATUS

| BAUD

{PARITY

{DATABITS

{STOPBITS

{ FLOWCTAL

{¥OMCHAR

{¥OFFCHAR

{HWAITIME

Parameter Parameter | Data type Description

type

REQ IN BOOL Activate the configuration change on rising edge of this
input.

PORT IN PORT Communication port identifier:
This logical address is a constant which can be
referenced within the "Constants" tab of the default tag
table.

PROTOCOL |IN UINT 0 - Point-to-Point free communication protocol
1..n - future definition for specific protocols

252

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.6 Point-to-Point instructions

Parameter Parameter | Data type Description
type
BAUD IN UINT Port baud rate:

1 - 300 baud

2 - 600 baud
3-1200 baud

4 - 2400 baud
5-4800 baud

6 - 9600 baud

7 - 19200 baud

8 - 38400 baud

9 - 57600 baud
10 - 76800 baud
11 - 115200 baud

PARITY IN UINT Port parity:

1 - No parity

2 - Even parity

3 - Odd parity

4- Mark parity

5 - Space parity
DATABITS IN UINT Bits per character:
1 - 8 data bits

2 - 7 data bits

STOPBITS IN UINT Stop bits:

1 - 1 stop bit

2 - 2 stop bits
FLOWCTRL |IN UINT Flow control:

1 - No flow control

2 - XON/XOFF

3 - Hardware RTS always ON
4 - Hardware RTS switched

XONCHAR IN CHAR Specify the character that is used as the XON character.
This is typically a DC1 character (11H). This parameter is
only evaluated if flow control is enabled.

XOFFCHAR |IN CHAR Specify the character that is used as the XOFF character.
This is typically a DC3 character (13H). This parameter is
only evaluated if flow control is enabled.

XWAITIME IN UINT Specify how long to wait for a XON character after
receiving a XOFF character, or how long to wait for the
CTS signal after enabling RTC. This parameter is only
evaluated if flow control is enabled.

DONE ouT BOOL TRUE for one scan, after the last request was completed
with no error

ERROR ouT BOOL TRUE for one scan, after the last request was completed
with an error

STATUS ouT WORD Execution condition code

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 253

Point-fo-Point (PfP) communications

8.6 Point-to-Point instructions

Condition codes

8.6.3

254

STATUS Description

(W#16#....)

80A0 Specific protocol does not exist.

80A1 Specific baud rate does not exist.

80A2 Specific parity option does not exist.

80A3 Specific number of data bits does not exist.
80A4 Specific number of stop bits does not exist.
80A5 Specific type of flow control does not exist.

SEND_CFG instruction

SEND_CFG (Send Configuration) allows the dynamic configuration of serial transmission
parameters in a Point-to-Point communication port. Any pending messages awaiting
transmission within a communication module (CM) will be discarded once SEND_CFG is

executed.

Set up the initial static configuration of the port in the device configuration properties.
Execute the SEND_CFG instruction in your program to change the configuration. The
SEND_CFG dynamic configuration changes are not permanently stored in the PLC.

LAD FBD
"SEMD_CFG_ “SEMD_CFG_
DE" (R
SEND_CFG | ~ SEND_CFG& |
—EM EMO = —EH
- REQ DOME H - REQ
{ FORT ERROR 4 { PORT
{RTSOMDLY STATUS {RTSOMDLY DOME —
{ RTSOFFDLY { RTSOFFDLY ERAOA —
| BREAX | BREAK STATUS |
{IDLELINE {IDLELINE ENO ~
Parameter Parameter | Data type Description
type

REQ IN BOOL Activate the configuration change on the rising edge of
this input.

PORT IN PORT Communication port identifier:

This logical address is a constant which can be
referenced within the "Constants" tab of the default tag
table.

RTSONDLY IN UINT Number of milliseconds to wait after enabling RTS
before any Tx data transmission occurs: This
parameter is only valid when hardware flow control is
enabled.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

Condition codes

8.6.4

8.6 Point-to-Point instructions

Parameter Parameter | Data type Description

type

RTSOFFDLY IN UINT Number of milliseconds to wait after the Tx data
transmission occurs, before RTS is disabled: This
parameter is only valid when hardware flow control is
enabled.

BREAK IN UINT This parameter specifies that a break will be sent upon
the start of each message for the specified number of
bit times. The maximum is 2500 bit times.

IDLELINE IN UINT This parameter specifies that the line will remain idle
for the specified number of bit times before the start of
each message. The maximum is 2500 bit times.

DONE ouT BOOL TRUE for one scan, after the last request was
completed with no error

ERROR ouT BOOL TRUE for one scan, after the last request was
completed with an error

STATUS ouT WORD Execution condition code

STATUS Description

(W#16#....)

80B0 Transmit interrupt configuration is not allowed

80B1 Break time is greater than the allowed value (2500 bit times)

80B2 Idle time is greater than the allowed value (2500 bit times)

RCV_CFG instruction

RCV_CFG (Receive Configuration) performs dynamic configuration of serial receiver
parameters in a Point-to-Point communication port. This instruction configures the conditions
that signal the start and end of a received message. Messages that satisfy these conditions
will be received by the RCV_PTP instruction.

Any queued messages waiting for transmission within a communication module (CM) will be

discarded when RCV_CFG is executed.

Set up the initial static configuration of the CM port in the device configuration properties.
Execute the RCV_CFG instruction in your program to change the configuration. The
RCV_CFG dynamic configuration changes are not permanently stored in the PLC; therefore,
following a power cycle, the initial static configuration from the device configuration will be

used.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

255

Point-fo-Point (PfP) communications

8.6 Point-to-Point instructions

LAD FBD
"RCY CFG_ "RV _CFG_
[o]: DE_ 1"
ACV_CFG | [ACV_CFG]
—EM ENO = —EN DONE |-
+REQ DONE 4 —REQ ERROR
{ FORT ERROR PORT STATUS |
{COMDITIONS ~ STATUS | {CONDITIONS END |-
Parameter Parameter | Data type Description
type

REQ IN BOOL Activate the configuration change on the rising edge of
this input.

PORT IN PORT Communication port identifier:

This logical address is a constant which can be
referenced within the "Constants" tab of the default tag
table.

CONDITIONS |IN Block_SDT | The Conditions data structure specifies the starting and
ending message conditions. These are described
below.

DONE ouT BOOL TRUE for one scan, after the last request was
completed with no error

ERROR ouT BOOL TRUE for one scan, after the last request was
completed with an error

STATUS ouT WORD Execution condition code

Start conditions for the RCV_PTP instruction

The RCV_PTP instruction uses the configuration specified by the RCV_CFG instruction to
determine the beginning and ending of point-to-point communication messages. The start of
a message is determined by the start conditions. The start of a message can be determined
by one or a combination of start conditions. If more than one start condition is specified, the
first one to satisfy the instruction will start the message.

Possible start conditions:
e Start Character

— The Start Character condition specifies that successfully receiving a particular
character will begin a message. This character will be the first character within a
message. Any character that is received before this specific character is discarded.

e Any Character

— The Any Character condition specifies that any successfully received character will
begin the start of a message. This character will be the first character within a

message.

® |Line Break

— The Line Break condition specifies that a message receive operation should start
when the receive line state is enabled longer than the total character time.

256

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.6 Point-to-Point instructions

e |dle Line

— The Idle Line condition specifies that a message reception should start once the
receive line has been idle or quiet for the number of specified bit times. Once this
condition occurs, the start of a message will begin.

@

N L
bt

@) ® ®

® Characters
@ Restarts the idle line timer
® Idle line is detected and message receive is started

® Variable Sequences

— Start conditions can be constructed that are based upon a variable number of
character sequences (up to a maximum of 4) consisting of a varying number of
characters (up to a maximum of 5). Each character position within each sequence
may be selected as a specific character, or selected as a wild-card character, meaning
any character will qualify. This start condition can be used when different sequences
of characters indicate the start of a message.

Consider the following received hexadecimal coded message: "68 10 aa 68 bb 10 aa
16" and the configured start sequences shown in the table below. Start sequences
begin to be evaluated when the first 68H character is successfully received. Upon
successfully receiving the fourth character (the second 68H), then start condition 1 is
satisfied. Upon successfully receiving the fifth character (bbH), evaluation of the end
conditions begins.

— The start sequence processing can be terminated due to various parity, framing, or
inter-character timing errors. These errors result in no received message, because the
start condition was not satisfied.

Start condition | First First Character | First Character | First Character | First Character
Character +1 +2 +3 +4
1 68H XX XX 68H XX
2 10H aaH XX XX XX
3 dcH aaH XX XX XX
4 e5H XX XX XX XX

End conditions for the RCV_PTP instruction

The end of a message is determined by the specification of end conditions. The end of a
message is determined by the first occurrence of one or more configured end conditions.

Possible message end conditions:
® Response Timeout

— The response timeout condition specifies that a character should be successfully
received within the time specified by RCVTIME. The timer begins as soon as the

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 257

Point-fo-Point (PfP) communications

8.6 Point-to-Point instructions

transmission completes successfully and the module begins the receive operation. If a
character is not received within the RCVTIME period, then an error is returned to the
corresponding RCV_PTP instruction. The response timeout does not define a specific
end condition. It only specifies that a character should be successfully received within
the specified time. A distinct end condition must be used.

® ®
RCVTIME

®

@ Transmitted characters
® Received characters
® The first character must be successfully received by this time

® Message Timeout

— The message timeout condition specifies that a message should be received within
the time specified by MSGTIME. The timer begins as soon as the specified start
condition has been satisfied.

@

N L
T T

@ ®

® Received characters

® Start Message condition satisfied: message timer starts
® Message timer expires and terminates the message

® Intercharacter Gap

— The intercharacter time is the time measured from the end of one character (the last
stop bit) until the end of the next character. If the time between any two characters
exceeds the number of configured bit times, the message will be terminated.

@

N L
bt

@ ® ®

©O) Received characters

@) Restarts the intercharacter timer
® The intercharacter timer expires and terminates the message with errors

S7-1200 Programmable controller
258 System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.6 Point-to-Point instructions

e Maximum Length

— The receive operation will stop once the specified number of characters have been
received. This condition can be used to prevent a message buffer overrun error.
When this end condition is combined with timeout end conditions and the timeout
condition occurs, any valid received characters are provided even if the maximum
length is not reached. This allows support for varying length protocols when only the
maximum length is known.

e Combination Condition of "N + Length Size + Length M". This end condition can be used
to process a varying sized message that contains a length field. The parameters are
described as follows.

— N specifies the position (number of characters into the message) where the length
field begins.

— Length Size specifies the size of the length field. Valid values are 1, 2, or 4 bytes.

— Length M specifies the number of ending characters (following the length field) that
are not included within the length of the message. As an example, this can be used to
specify the length of a checksum field whose size is not included in the length field.
As an example, consider a message format that consists of a start character, an
address character, a one-byte length field, message data, checksum characters, and
an end character.

— The entries identified with "Len" correspond with the N parameter. The value of N
would be 3, specifying that the length byte is positioned 3 bytes into the message. The
value of Length Size would be 1, specifying that the value for the length of the
message is contained in 1 byte. The checksum and end char fields correspond with
the "Length M" parameter. The value of "Length M" would be 3, specifying the number
of bytes of the 3 end fields.

Start char | Address Len Message Checksum and End char
(N) Length M
(1 (2 3) . (X) X+1 X+2 x+3
XX XX XX XX ‘ XX XX XX ‘ XX

® Variable Characters

— This end condition can be used to end receiving based upon different character
sequences. The sequences can consist of a varying number of characters (up to a
maximum of 5). Each character position within each sequence can be selected as a
specific character, or selected as a wild-card character, meaning any character will
satisfy the condition. Any leading characters that are configured to be ignored are not
required to be part of the message. Any trailing characters that are ignored are
required to be part of the message.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 259

Point-fo-Point (PfP) communications

8.6 Point-to-Point instructions

Parameter CONDITIONS data type structure part 1 (start conditions)

Parameter Parameter | Data type Description
type
STARTCOND |IN UINT Specify the start condition:
e 1- Start Char
e 16- Sequence 1
e 2- Any Char
e 32- Sequence 2
e 4-Line Break
e 64- Sequence 3
e 8-Idle Line
e 128- Sequence 4
IDLETIME IN UINT The number of bit times required for idle line timeout.
Only used with an idle line condition.
STARTCHAR IN BYTE The start character used with the start character
condition.
STRSEQ1CTL |IN BYTE Sequence 1 ignore/compare control for each character:
These are the enabling bits for each character in start
sequence 1. Character 1 is bit 0, character 2 is bit 1,
..., Character 5 is bit 4. Disabling the bit associated with
a character means any character will match, in this
sequence position.
STRSEQ1 IN CHAR[5] Sequence 1 start characters (5 characters)
STRSEQ2CTL |IN BYTE Sequence 2 ignore/compare control for each character
STRSEQ2 IN CHARI5] Sequence 2 start characters (5 characters)
STRSEQ3CTL |IN BYTE Sequence 3 ignore/compare control for each character
STRSEQ3 IN CHARI5] Sequence 3 start characters (5 characters)
STRSEQ4CTL |IN BYTE Sequence 4 ignore/compare control for each character
STRSEQ4 IN CHAR[5] Sequence 4 start characters (5 characters)

Parameter CONDITIONS data type structure part 2 (end conditions)

260

Parameter Parameter | Data type Description
type

ENDCOND IN UINT This parameter specifies message end condition:
e 1 -Response time
e 16-N+LEN+M
e 2 -Message time
e 32-Sequence
e 4 - Inter-character gap
e 8 -Maximum length

MAXLEN IN UINT Maximum message length: Only used when the
maximum length end condition is selected.

N IN UINT Byte position within the message of the length field.

Only used with the N + LEN + M end condition.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.6 Point-to-Point instructions

Parameter Parameter | Data type Description

type

LENGTHSIZE |IN UINT Size of the byte field (1, 2, or 4 bytes). Only used with
the N + LEN + M end condition.

LENGTHM IN UINT Specify the number of characters following the length
field that are not included in the value of the length
field. This is only used with the N + LEN + M end
condition.

RCVTIME IN UINT Specify how long to wait for the first character to be
received. The receive operation will be terminated with
an error if a character is not successfully received
within the specified time. This is only used with the
response time condition.

This parameter is not really evaluated as an end
condition since it only evaluates start conditions. A
distinct end condition must be selected.

MSGTIME IN UINT Specify how long to wait for the entire message to be
completely received once the first character has been
received. This parameter is only used when the
message timeout condition is selected.

CHARGAP IN UINT Specify the number of bit times between characters. If
the number of bit times between characters exceeds
the specified value, then the end condition will be
satisfied. This is only used with the inter-character gap
condition.

ENDSEQ1CTL |IN BYTE Sequence 1 ignore/compare control for each character:
These are the enabling bits for each character for the
end sequence. Character 1 is bit 0, character 2 is bit 1,
..., character 5 is bit 4. Disabling the bit associated with
a character means any character will match, in this
sequence position.

ENDSEQ1 IN CHARI5] Sequence 1 start characters (5 characters)

Condition codes

STATUS Description

(W#16#....)

80CO0 lllegal start condition selected

80C1 lllegal end condition selected, no end condition selected

80C2 Receive interrupt enabled and this is not possible

80C3 Max length end condition is enabled and max length is 0 or > 1024

80C4 Calculated length is enabled and N is >= 1023

80C5 Calculated length is enabled and length is not 1, 2 or 4

80C6 Calculated length is enabled and M value is > 255

80C7 Calculated length is enabled and calculated length is > 1024

80C8 Response timeout is enabled and response timeout is zero

80C9 Inter-character gap timeout is enabled and it is zero or > 2500

80CA Idle line timeout is enabled and it is zero or > 2500

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

261

Point-fo-Point (PfP) communications

8.6 Point-to-Point instructions

8.6.5

262

STATUS Description

(W#16#....)

80CB End sequence is enabled but all chars are "don't care"

80CC Start sequence (any one of 4) is enabled but all chars are "don't care"

SEND_PTP instruction

SEND_PTP (Send Point-to-Point data) initiates the transmission of the data. SEND_PTP
transfers the specified buffer to the RS232 or RS485 module. The CPU program continues
while the module sends the data at the specified baud rate.

LAD FBD
"SEND,_PTF_ "SEND_PTF._
DE" DE
[SEND_PTP [SEND_PTP
={EN END = —{EM
- RED DOMNE - - REL
FORT ERROR 4 {FORT DOME
BUFFER STATUS | BUFFER ERROR =
LENGTH {LEMGTH STATUS |
={FTRCL —FTRCL END —
Parameter Parameter | Data type Description
type

REQ IN BOOL Activates the requested transmission on the rising edge
of this transmission enable input. This initiates transfer of
the contents of the buffer to the Point-to-Point
communication module (CM).

PORT IN PORT Communication port identifier:

This logical address is a constant which can be
referenced within the "Constants" tab of the default tag
table.

BUFFER IN VARIANT This parameter points to the starting location of the
transmit buffer. Note that for the provided Siemens
protocols, this input is intended to be used to send both
configuration and protocol data to the PtP device. The
PTRCL parameter specifies this selection.

LENGTH IN UINT Transmitted frame length

PTRCL IN BOOL This parameter selects the buffer as normal point-to-point
or specific Siemens-provided protocols that are
implemented within the attached CM.

FALSE = user program controlled point-to-point
operations.

DONE ouT BOOL TRUE for one scan, after the last request was completed
with no error

ERROR ouT BOOL TRUE for one scan, after the last request was completed
with an error

STATUS ouT WORD Execution condition code

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications
8.6 Point-to-Point instructions

Operation

While a transmit operation is in progress, the DONE and ERROR outputs are FALSE. When
a transmit operation is complete, either the DONE or the ERROR output will be set TRUE
(for one scan cycle) to show the status of the transmit operation. While DONE or ERROR is
TRUE, the STATUS output is valid.

The instruction returns a status of 16#7001 if the communication module (CM) accepts the
transmit data. Subsequent SEND_PTP executions return a 16#7002 if the CM is still busy
transmitting. When the transmit operation is complete, the CM will return the status of the
transmit operation 16#0000, if no errors occurred. Subsequent executions of SEND_PTP
with REQ low return a status of 16#7000 (not busy).

Relationship of the output values to REQ:

This assumes that the instruction is called periodically to check for the status of the
transmission process. In the diagram below, it is assumed that the instruction is called every
scan (represented by the STATUS values).

REQ
DOME
ERRCRE

STATUS [7000H | 7001H | 70020 | 7002H | 7002H | 0000H | 7000H |

The following diagram shows how the DONE and STATUS parameters are valid for only one
scan if the REQ line is pulsed (for one scan) to initiate the transmit operation.

REQ |
DOMNE |

ERFOR

STATUS [70000 | 70010 | 70020 | 70020 | 70020 | 0000H | 70004 | 7000H |

The following diagram shows the relationship of DONE, ERROR and STATUS parameters
when there is an error.

REQ

DoOME

ERROR

STATUS [70000 | 70010 | 70020 | 70020 [70020 [80D1H | fo00d | 70000 |

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 263

Point-fo-Point (PfP) communications

8.6 Point-to-Point instructions

Condition codes

8.6.6

264

STATUS Description

(W#16#....)

80D0 New request while transmitter active

80D1 Transmit aborted because of no CTS within wait time
80D2 Transmit aborted because of no DSR from the DCE device
80D3 Transmit aborted because of queue overflow

7000 Not busy

7001 Busy when accepting request (first call)

7002 Busy on a poll (nth call)

RCV_PTP instruction

RCV_PTP (Receive Point-to-Point) checks for messages that have been received in the
Point-to-Point communication module (CM). If a message is available, it will be transferred
from the module to the CPU. If an error has occurred, an appropriate STATUS value will be
returned.

The STATUS value is valid when either NDR or ERROR is TRUE. The STATUS value
provides the reason for termination of the receive operation in the CM. This will typically be a
positive value, indicating that the receive operation was successful and that the receive
process terminated normally. If the STATUS value is negative (the Most Significant Bit of the
hexadecimal value is set), that indicates the receive operation was terminated for an error
condition such as parity, framing, or overrun errors.

Each Point-to-Point CM module can buffer up to a maximum of 1K bytes. This buffer can be
allocated across multiple received messages.

LAD FBD
“ROV_PTP_DB™ “RCV_FTP_DB™
I ROEPTP | — RV PTF
—EM ENOD - HOR ~
-EM_R HDR - —EM ERROR -
PORT ERROR 4 —{EN_R STATUS |
BUFFER STATUS |PORT LENGTH |
LENGTH | {BUFFER END =
Parameter | Parameter | Data type Description
type
EN_R IN BOOL When this input is TRUE, check the CM module for
received messages. If a message was successfully
received, it will be transferred from the module to the CPU.
PORT IN PORT Communication port identifier:

This logical address is a constant that can be referenced
within the "Constants" tab of the default tag table.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.6 Point-to-Point instructions

Parameter | Parameter | Data type Description
type

BUFFER IN VARIANT This parameter points to the starting location of the receive
buffer. The length of the buffer is implicitly known as a
result of the variant data type.

NDR ouT BOOL TRUE for one scan, when new data is ready and operation
is complete with no errors.

ERROR ouT BOOL TRUE for one scan, after the operation was completed with
an error

STATUS ouT WORD Execution condition code

LENGTH ouT UINT Length of the returned message

The output NDR (New Data Ready) indicates that the requested action has completed
without error and new data has been received. This output will be set for one scan.

Condition codes

STATUS
(WH16#...)

Description

0000

No buffer present

80EO0

Message terminated because the receive buffer is full

80E1

Message terminated due to parity error

80E2

Message terminated due to framing error

80E3

Message terminated due to overrun error

80E4

Message terminated because calculated length exceeds buffer size

0094

Message terminated due to received maximum character length

0095

Message terminated because of message timeout

0096

Message terminated because of inter-character timeout

0097

Message terminated because of response timeout

0098

Message terminated because the "N+LEN+M" length condition was satisfied

0099

Message terminated because of end sequence was satisfied

8.6.7 RCV_RST instruction

RCV_RST (Receiver Reset) clears the receive buffer.

LAD FBD
“RCV_AST_DB" "RCV_AST_DB"
RCV_RAST | [RCV_RAST |
=EN EMO = DONE =
- FEQ DOME - —{EN ERROR —
{POAT ERAOA = —{REQ STATLS
STATUS | FORT ENO -

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01 265

Point-fo-Point (PfP) communications

8.6 Point-to-Point instructions

Parameter | Parameter | Data type | Description

type

REQ IN BOOL Activates the receiver reset on the rising edge of this enable
input

PORT IN PORT Communication port identifier:

The port must be specified using the module’s logical
address.

DONE ouT BOOL When TRUE for one scan, indicates that the last request was
completed without errors.

ERROR ouT BOOL When TRUE, shows that the last request was completed with
errors. Also, when this output is TRUE, the STATUS output
will contain related error codes.

STATUS ouT WORD Error code

8.6.8 SGN_GET instruction
SGN_GET (Get RS232 Signals) reads the current states of RS232 communication signals.
This function is only valid for the RS232 CM (communication module).
LAD FBD
“SGN_GET_ “SGN_GET
oE" oE"
SGN_GET | SEN_GET [
—EMN ENO = NDR -
- REQ MOR 4 ERROR
{ PORT ERROR STATUS
STATUS DTR
DTR = DSR =
DSR = RTS =
RTS CTs
CTS 4 —EN DCD -
DCD = — REQ RING
RING H {FORT END =
Parameter | Parameter | Data type | Description
type
REQ IN BOOL Get RS232 signal state values on the rising edge of this input
PORT IN PORT Communication port identifier:
This logical address is a constant which can be referenced
within the "Constants" tab of the default tag table.
NDR ouT BOOL TRUE for one scan, when new data is ready and the
operation is complete with no errors
ERROR ouT BOOL TRUE for one scan, after the operation was completed with an
error
STATUS ouT WORD Execution condition code
DTR ouT BOOL Data terminal ready, module ready
DSR ouT BOOL Data set ready, communication partner ready
S7-1200 Programmable controller
266 System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications
8.6 Point-to-Point instructions

Parameter | Parameter | Data type | Description
type
RTS ouT BOOL Request to send, module ready to send
CTS ouT BOOL Clear to send, communication partner can receive data
DCD ouT BOOL Data carrier detect, receive signal level
RING ouT BOOL Ring indicator, indication of incoming call

Condition code

STATUS Description

(W#16#....)

80F0 CM is RS485 module and no signals are available

80F1 Signals cannot be set because of Hardware flow control
80F2 Cannot set DSR because module is DTE

80F3 Cannot set DTR because module is DCE

8.6.9 SGN_SET instruction

SGN_SET (Set RS232 Signals) sets the states of RS232 communication signals. This
function is only valid for the RS232 CM (communication module).

LAD FBD
"SGN_SET_DB” “SGM_SET_DE"
SGN_SET | SGN_SET |

=EN ENO = = EM
= REQ DOMNE - = REQ

|FORT ERROR - | FORT

{ SIGHAL STATUS | SIGHAL DONE =
= RTS - RT5 ERROR —
~DOTR =DTR STATUS |
=DSA = B3R ENDO -

Parameter | Parameter | Data type Description

type
REQ IN BOOL Start the set RS232 signals operation, on the rising edge of
this input
PORT IN PORT Communication port identifier:

This logical address is a constant that can be referenced
within the "Constants" tab of the default tag table.

SIGNAL IN BYTE Selects which signal to set:
e 01H=SetRTS
e 02H=SetDTR
e 04H = Set DSR

RTS IN BOOL Request to send, module ready to send
DTR IN BOOL Data terminal ready, module ready

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 267

Point-fo-Point (PfP) communications

8.7 Errors
Parameter | Parameter | Data type Description
type
DSR IN BOOL Data set ready (only applies to DCE type interfaces)
DONE ouT BOOL TRUE for one scan, after the last request was completed
with no error
ERROR ouT BOOL TRUE for one scan, after the last request was completed
with an error
STATUS ouT WORD Execution condition code
Condition code
STATUS Description
(W#16#....)
80F0 CM is RS485 module and no signals are settable
80F1 Signals cannot be set because of Hardware flow control
80F2 Cannot set DSR because module is DTE
80F3 Cannot set DTR because module is DCE
8.7 Errors

Return values of PtP instructions
Each PtP instruction has three outputs that provide the completion status:

Parameter Data type Default Description

DONE Boolean FALSE TRUE for one scan indicates that the last request
completed without errors.

ERROR Boolean FALSE TRUE indicates that the last request completed with

errors, with the applicable error code in STATUS.

STATUS Word 0 Two bytes that contain the error class and error
number, if applicable. STATUS retains its value for the
duration of the execution of the function.

STATUS output

Both general and PtP specific errors can be returned. The bit representation for general
errors is as follows:

5 | [| [[1 8 Jz | | Ja [z | | Jo
1 Parameter number 0 Event number

S7-1200 Programmable controller
268 System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.7 Errors

The bit representation for PtP-specific errors is as follows:

5 | | []

K

7 | [Ja s [] o

1

Error class Error number

Common error classes and errors

Class description Error classes Description
Port configuration 80AX Used to define common port configuration errors
Transmit configuration 80Bx Used to define common transmit configuration
errors
Receive configuration 80Cx Used to define common receive configuration
errors
Transmission runtime 80Dx Used to define common transmission runtime
errors
Reception runtime 80Ex Used to define common reception runtime errors
Signal handling 80Fx Used to define common errors associated with all
signal handling
Port configuration errors.
Event / error ID Description
0x80A0 The specific protocol does not exist
0x80A1 The specific baud rate does not exist
0x80A2 The specific parity does not exist
0x80A3 The specific number of data bits does not exist
0x80A4 The specific number of stop bits does not exist
0x80A5 The specific type of flow control does not exist

Transmit configuration errors

Event / error ID

Description

0x80B0

The specific protocol does not exist

0x80B1

The specific baud rate does not exist

0x80B2

The specific parity does not exist

0x80B3

The specific number of data bits does not exist

0x80B4

The specific number of stop bits does not exist

0x80B5

The specific type of flow control does not exist

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

269

Point-fo-Point (PfP) communications

8.7 Errors

Receive configuration errors

Signal errors

Event / error ID

Description

0x80CO0 Start condition error

0x80C1 End condition error

0x80C3 Maximum length error

0x80C4 N value error (refer to N+LEN+M)

0x80C5 Length size error (refer to MAXLEN or N+LEN+M)

0x80C6 M value error (refer to N+LEN+M)

0x80C7 N-Length-M value error (refer to N+LEN+M)

0x80C8 Response timeout error, no message was received during the specified
receive period. (refer to RCVTIME or MSGTIME)

0x80C9 Inter-character timeout error (refer to CHARGAP)

0x80CA Idle line timeout error (refer to Idle Line)

0x80CB A specified end sequence is configured with all "don't care" characters

0x80CC A specified start sequence is configured with all "don't care" characters

Event / error ID

Description

0x80F0 The communication module is an RS485 module and no signals are available

0x80F1 The communication module is an RS232 module, but no signals are settable
because H/W flow control is enabled

0x80F2 The DSR signal can not be set since the module is a DTE device

Transmission runtime errors

270

Event / error ID Description
Buffer Limit The total available transmit buffer of the CP has been exceeded

0x80D0 A new request was received while the transmitter was active

0x80D1 The receiver issued a flow control request to suspend an active transmission
and never re-enabled the transmission during the specified wait time
This error is also generated during hardware flow control when the receiver
does not assert CTS within the specified wait time

0x80D2 The transmit request was aborted because no DSR signal is received from the
DCE

0x80D3 The total available transmit buffer of the CP has been exceeded

0x7000 The transmit function is not busy

0x7001 The transmit function is busy with the first call

0x7002 The transmit function is busy with subsequent calls (polls after the first call)

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Point-to-Point (PtP) communications

8.7 Errors
Reception runtime return values
Event / error ID Description

0x80EO The message was terminated because the receive buffer is full

0x80E1 The message was terminated as a result of a parity error

0x80E2 The message was terminated as a result of a framing error

0x80E3 The message was terminated as a result of an overrun error

0x80E4 The message was terminated as a result of the specified length exceeding the
total buffer size

0x0094 The message was terminated because the maximum character length was
received (MAXLEN)

0x0095 The message was terminated because the complete message was not
received in the specified time (MSGTIME)

0x0096 The message was terminated because the next character was not received in
the within the duration of the inter-character time (CHARGAP)

0x0097 The message was terminated because the first character was not received in
the specified time (RCVTIME)

0x0098 The message was terminated because the "n+len+m" length condition has
been satisfied (N+LEN+M)

0x0099 The message was terminated because the end sequence has been satisfied
(ENDSEQ)

Miscellaneous parameter errors
Event / error ID Description

0x8n3A An illegal pointer was provided on parameter n

0x8070 All internal instance memory is in use

0x8080 The port number is invalid

0x8082 Parameterization failed because parameterization is already in progress in the
background

0x8083 Buffer overflow. CM returned more data than allowed.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 271

Point-fo-Point (PfP) communications

8.7 Errors

S7-1200 Programmable controller
272 System Manual, 04/2009, ASE02486680-01

Online and diagnostic tools

9.1

Status LEDs

9

The CPU and the I/O modules use LEDs to provide information about either the operational

status of the module or the 1/O.

The CPU provides the following status indicators:

e STOP/RUN

— Solid orange indicates STOP mode

— Solid green indicates RUN mode

— Flashing (alternating green and orange) indicates that the CPU is starting up

e ERROR

— Flashing red indicates an error, such as an internal error in the CPU, a error with the

memory card, or a configuration error (mismatched modules)

— Solid red indicates defective hardware

® MAINT (Maintenance)

— Blinking orange when the CPU is in STOP mode indicates that you must remove the

memory card

— Solid orange when in STOP mode indicates an error, such as a memory card had
been inserted while the CPU was in RUN mode, an unformatted memory card had
been inserted, or that a module had gone offline

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

Description STOP / RUN ERROR MAINT
Orange / Green Red Orange
Power is off Off Off Off
Startup, self-test, firmware update Flashing (alternating orange - Off
and green)

Stop mode On - -
(orange)

Run mode On - -
(orange)

Remove the memory card On - Flashing
(orange)

Error On Flashing -

(either orange or green)
Maintenance requested On - On
(either orange or green)

Defective hardware On On Off
(orange)

LED test or defective CPU firmware Flashing (alternating orange Flashing Flashing

and green)
273

Online and diagnostic tools

9.1 Status LEDs

The CPU also provides two LEDs that indicate the status of the PROFINET communications.
Open the bottom terminal block cover to view the PROFINET LEDs.

® Link (green) turns on to indicate a successful connection
® Rx/Tx (yellow) turns on to indicate transmission activity

The CPU and each digital signal module (SM) provide an 1/O Channel LED for each of the
digital inputs and outputs. The I/O Channel (green) turns on or off to indicate the state of the
individual input or output.

In addition, each digital SM provides a DIAG LED that indicates the status of the module:
® Green indicates that the module is operational

® Red indicates that the module is defective or non-operational

Each analog SM provides an I/O Channel LED for each of the analog inputs and outputs.
® Green indicates that the channel has been configured and is active

® Red indicates an error condition of the individual analog input or output

In addition, each analog SM provides a DIAG LED that indicates the status of the module:
® Green indicates that the module is operational

® Red indicates that the module is defective or non-operational

The SM detects the presence or absence of power to the module (field-side power, if

required).
Description DIAG 1/0 Channet
(Red / Green) (Red / Green)
Field-side power is off Flashing red Flashing red
Not configured or updated in progress Flashing green Off
Module configured with no errors On (green) On (green)
Error condition Flashing red -
1/0 error (with diagnostics enabled) - Flashing red
1/0 error (with diagnostics disabled) - On (green)

S7-1200 Programmable controller
274 System Manual, 04/2009, ASE02486680-01

Online and diagnostic tools

9.2

9.2 Going online and connecting fo a CPU

Going online and connecting to a CPU

An online connection between the programming device and a target system is required for
loading programs and project engineering data to the target system as well as for activities
such as the following:

e Testing user programs Online & /
« Displaying and changing the operating mode of the CIRgReEIiS

CPU
e Displaying and setting the date and time of day of the

CPU

e Displaying the module information
e Comparing online and offline blocks
e Diagnosing hardware

You can then access the data on the target system in the online or diagnostics view using
the "Online tools" task card.

The current online
status of a device
is indicated by an
icon to the right
next to the device
in the project
navigation.

The orange color
indicates an online
connection.

Estended download te device

Conligrared setmi fesdhd ol LN

Dt
(Lt

dddraan
T2 B 0

Corwtei i By Frer
TP 120 AC DD 1o

|

PONCrtndace lof leadng Dol DOBEICO VIS 20 P

L

ey bl Srwonn i lage? sulbnrt f'j-hcnr.l'- atiestble drncel
i
Orvce Braw Bper Tt 3 Targrt devige

Select "Accessible 2 one e

Nodes" to f|nd a = MEECa BBt L R I ST FE SELRAEOEAE =

CPU on the
network.

Eabpin
Exive

] Earrel

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

275

Online and diagnostic tools

9.3 Setting the IP address and fime of day

CIICk "GO Online" Condigpared acceis oded of TR

to connect to a ——— - sas
CPU on the ; me U IMACOED. Tow Ty
network.

FEFC ainriaie b go ool wath -

At iplle drwirl o larget dulnet

Dirvide Bratn typ e Addoran Tarprt devide

| i.-.r;-—l

9.3 Setting the IP address and time of day

You can set the IP address and time of day
in the online CPU.

Agzian P adiress

After connecting to an online CPU from the “*i:'; Moot en L
"Online & diagnostics" area, you can display N —

or change the IP address. e et

Refer to the section on the IP address s F asdeen

(Page 70) for more information..

You can also display or set the time and
date parameters of the online CPU. S v diay

Hadule tme

o Ay L b PR hppdy

S7-1200 Programmable controller
276 System Manual, 04/2009, ASE02486680-01

Online and diagnostic tools

9.4 CPU operaftor panel for the online CPU

9.4 CPU operator panel for the online CPU

You can use the CPU operating panel to change the operating mode of an online CPU.

The "CPU operator panel" task card displays the operating mode
(STOP or RUN) of the online CPU: The panel also shows whether

w (PL sperater panel

PLC 1 |OR0 12148 DOmonn g

the CPU has an error or if values are being forced. - HI‘ "_:‘

Use the panel to change the operating mode of the CPU. s ity
9.5 Monitoring the cycle time and memory usage

You can monitor the cycle w Cyele tims

time and memory usage of e e sgram

an online CPU. == —_—t ™

After connecting to the , . . i

online CPU, you can view a8 5 i)

the following

measurements:

e Cycle time Circie thane a8t

e Memory usage

Cycle thmey moaiured
Wy ¥ Mrmary
0w -

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

R gy £ P Lol Ry e e e T

Lk
i

e ¥

Erteetovr =y date

277

Online and diagnostic tools

9.6 Displaying diagnostic events in the CPU

9.6

9.7

278

Displaying diagnostic events in the CPU

Use the diagnostics buffer to review the recent activity in the CPU.

The diagnostics buffer contains the Dlagrosstics busfed

following entries:

o Diagnostic events S R S e e

¢ Changes in the CPU operating e Cwmandtma s -
mode (transitions to STOP or RUN : B I et o e s e
mode)

The first entry contains the latest event.
Each entry in the diagnostic buffer
contains the date and time the event
was logged, and a description. Freese sl
The maximum number of entries is

dependent on the CPU. A maximum of STy R e s b M) S B HeORICA

i e et e w1 R B B RN bk P o

50 entries is supported. TR R

Only the 10 most recent events in the L M P e S oA T
diagnostic buffer are stored o
permanently. Resetting the CPU to the
factory settings resets the diagnostic —
buffer by deleting the entries.

Watch tables for monitoring the user program

A watch table allows you to perform monitoring and control functions on data points as the
CPU executes your program. These data points can be process image (I or Q), physical
(I_:P or Q_:P), M, or DB depending on the monitor or control function.

The Monitoring function does not change the program sequence. It presents you with
information about the program sequence and the data of the program in the CPU.

Control functions enable the user to control the sequence and the data of the program.
Caution must be exercised when using control functions. These functions can seriously
influence the execution of the user/system program. The three control functions are Modify,
Force and Enable Outputs in STOP.

With the watch table, you can perform the following online functions:

® Monitoring the status of the tags

e Modifying values for the individual tags

® Forcing a tag to a specific value

You select when to monitor or modify the tag:

® Beginning of scan cycle: Reads or writes the value at the beginning of the scan cycle
® End of scan cycle: Reads or writes the value at the end of the scan cycle

e Switch to stop

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Online and diagnostic tools
9.7 Watch tables for monitoring the user program

= [FLC_1 [CPU 1214C DODGDC]
uT Dievace :un||qurat|un

To create a watch table:

1. Double-click "Add new watch table" to open a new B Online & disgnostics
watch table. F . Frogram blocks
2. Enter the tag name to add a tag to the watch table. : -+ :E"”""’?'“b""’“
. . . . tags
The following options are available for monitoring tags: = iwﬂm Eablas
e Monitor all: This command starts the monitoring of the 2 new Watch table

visible tags in the active watch table.

e Monitor now: This command starts the monitoring of
the visible tags in the active watch table. The watch
table monitors the tags immediately and once only.

The following options are available for modifying tags:
e "Modify to 0" sets the value of a selected address to "0".
o "Modify to 1" sets the value of a selected address to "1".

® "Modify now" immediately changes the value for the selected addresses for one scan
cycle.

e "Modify with trigger" changes the values for the selected addresses.

This function does not provide feedback to indicate that the selected addresses were
actually modified. If feedback of the change is required, use the "Modify now" function.

e "Enable peripheral outputs" disables the command output disable and is available only
when the CPU is in STOP mode.

To monitor the tags, you must have an online connection to the CPU.

e

& 7 7 F Fos K '
Pasree Asdrary Oeiplay farmpd | Mossior vahus Rellran iz msths Seaizns Boddy welh ngaer Vales ¥ F Cormenert_ |
Ty~ %00 Dol Femanent Peruanent
Bap" =il Bodl Ferrranern! Farrranan!
Fharedng™ NADG Bool Peimanant Pemesnsnt

L %000 Boal Femanant Frmruagnend

The various functions can be selected using the buttons at the top of the watch table.

Enter the tag name to monitor and select a display format from the dropdown selection. With
an online connection to the CPU, clicking the "Monitor" button displays the actual value of
the data point in the "Monitor value" field.

Using a trigger when monitoring or modifying PLC tags
Triggering determines at what point in the scan cycle the selected address will be monitored

or modified.
Trigger Type Description
Permanent Continuously collects the data

At scan cycle start Permanent: Continuously collects the data at the start of the scan cycle, after
the CPU reads the inputs

Once: Collects the data at the start of the scan cycle, after the CPU reads the
inputs

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 279

Online and diagnostic tools

9.7 Watch tables for monitoring the user program

Trigger Type Description

At scan cycle end Permanent: Continuously collects the data at the end of the scan cycle, before
the CPU writes the outputs

Once: Collects the data once at the end of the scan cycle, before the CPU
writes the outputs

At transition to Permanent: Continuously collects data when the CPU transitions to STOP
STOP Once: Collects the data once after the CPU transitions to STOP

For modifying a PLC tag at a given trigger, select either the start or the end of cycle.

e Modifying an output: The best trigger event for modifying an output is at the end of the
scan cycle, immediately before the CPU writes the outputs.

Monitor the value of the outputs at the beginning of the scan cycle to determine what
value is written to the physical outputs. Also, monitor the outputs before the CPU writes
the values to the physical outputs in order to check program logic and to compare to the
actual I/O behavior.

e Modifying an input: The best trigger event for modifying an input is at the start of the
cycle, immediately after the CPU reads the inputs and before the user program uses the
input values.

If you are modifying inputs the start of the scan cycle, you should also monitor the value
of the inputs at the end of the scan cycle to ensure that the value of the input at the end
the scan cycle has not changed from the start of the scan cycle. If there is a difference in
the values, your user program may be writing to an input in error.

To diagnose why the CPU might have gone to STOP, use the "Transition to STOP" trigger to
capture the last process values.

Enabling outputs in STOP mode

280

The watch table allows you to write to the outputs when the CPU is in STOP mode. This
functionality allows you to check the wiring of the outputs and verify that the wire connected
to an output pin initiates a high or low signal to the terminal of the process device to which it
is connected.

AWARN ING

Even though the CPU is in STOP mode, enabling a physical output can activate the
process point to which it is connected.

You can change the state of the outputs in STOP mode when the outputs are enabled. If the
outputs are disabled, you cannot modify the outputs in STOP mode.

® To enable the modification of the outputs in STOP, select the "Enable peripheral outputs"
option of the "Modify" command of the "Online" menu, or by right-clicking the row of the
Watch table.

e Setting the CPU to RUN mode disables "Enable peripheral outputs" option.

e |f any inputs or outputs are forced, the CPU is not allowed to enable outputs while in
STOP mode. The force function must first be cancelled.

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Online and diagnostic tools

9.7 Watch tables for monitoring the user program

Forcing values in the CPU

The CPU allows you to force input and output point(s) by specifying the input or output
address in the watch table and starting force. Force is applied to the input process image
prior to the execution of the user program and to the output process image before the
outputs are written to the modules.

In the program, reads of physical inputs are overwritten by the forced value. The program
uses the forced value in processing. When the program writes a physical output, the output
value is overwritten by the force value. The forced value appears at the physical output and
is used by the process.

When an input or output is forced in the watch table, the force actions become part of the
user program. Even though the programming software has been closed, the force selections
remain active in the operating CPU program until they are cleared by going online with the
programming software and stopping the force function. Programs with forced points loaded
on another CPU from a memory card will continue to force the points selected in the
program.

Startup

A The clearing of the | memory areaisnot @ While writing Q memory to the physical
affected by the Force function. outputs, the CPU applies the force value as
the outputs are updated.

B The initialization of the outputs valuesis @ After copying the state of the physical inputs

not affected by the Force function. to | memory, the CPU applies the force
values.

C During the execution of the startup OBs, ® During the execution of the user program
the CPU applies the force value when (cyclic OBs), the CPU applies the force value
the user program accesses the physical when the user program accesses the physical
input. input.

D After copying the state of the physical ® Handling of communication requests and self-
inputs to | memory, the CPU applies the test diagnostics are not affected by the Force
force values. function.

E The storing of interrupt events into the ® The processing of interrupts during any part of
queue is not affected. the scan cycle is not affected.

F The enabling of the writing to the
outputs is not affected.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 281

Online and diagnostic tools

9.7 Watch tables for monitoring the user program

S7-1200 Programmable controller
282 System Manual, 04/2009, ASE02486680-01

Technical specifications / \

A1 General Technical Specifications

Standards compliance

The S7-1200 automation system complies with the following standards and test
specifications. The test criteria for the S7-1200 automation system are based on these
standards and test specifications.

CE approval

objectives according to the EC directives listed below, and conforms to the
harmonized European standards (EN) for the programmable controllers
listed in the Official Journals of the European Community.

c € The S7-1200 Automation System satisfies requirements and safety related

e EC Directive 2006/95/EC (Low Voltage Directive) "Electrical Equipment Designed for Use
within Certain Voltage Limits"

— EN 61131-2:2007 Programmable controllers - Equipment requirements and tests
e EC Directive 2004/108/EC (EMC Directive) "Electromagnetic Compatibility"

— Emission standard
EN 61000-6-4:2007: Industrial Environment

— Immunity standard
EN 61000-6-2:2005: Industrial Environment

e EC Directive 94/9/EC (ATEX) "Equipment and Protective Systems Intended for Use in
Potentially Explosive Atmosphere

— EN60079-15:2005: Type of Protection 'n'
The CE Declaration of Conformity is held on file available to competent authorities at:

Siemens AG

IA AS RD ST PLC Amberg
Werner-von-Siemens-Str. 50
D92224 Amberg

Germany

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 283

Technical specifications
A. 1 General Technical Specifications

cULus approval

Underwriters Laboratories Inc. complying with
C Us e Underwriters Laboratories, Inc.: UL 508 Listed (Industrial Control
Equipment)

e (Canadian Standards Association: CSA C22.2 Number 142
(Process Control Equipment)

NOTICE

The SIMATIC S7-1200 series meets the CSA standard.

The cULus logo indicates that the S7-1200 has been examined and certified by
Underwriters Laboratories (UL) to standards UL 508 and CSA 22.2 No. 142.

FM approval

Factory Mutual Research (FM):
Approval Standard Class Number 3600 and 3611
APPROVED Approved for use in:
Class |, Division 2, Gas Group A, B, C, D, Temperature Class T4A Ta =
40° C
Class |, Zone 2, IIC, Temperature Class T4 Ta =40° C

ATEX approval

EN 60079-0:2006: Explosive Atmospheres - General Requirements
EN 60079-15:2005: Electrical Apparatus for potentially explosive
atmospheres;

Type of protection 'n'

I13GExnAIlT4
The following special conditions for safe use of the S7-1200 must be followed:

e |nstall modules in a suitable enclosure providing a minimum degree of protection of IP54
according to EN 60529 and take into account the environmental conditions under which
the equipment will be used.

e \When the temperature under rated conditions exceeds 70° C at the cable entry point, or
80° C at the branching point of the conductors, the temperature specification of the
selected cable should be in compliance with the actual measured temperature.

® Provisions should be made to prevent the rated voltage from being exceeded by transient
disturbances of more than 40%.

S7-1200 Programmable controller
284 System Manual, 04/2009, ASE02486680-01

Technical specifications
A. 1 General Technical Specifications

C-Tick approval

The S7-1200 automation system satisfies requirements of standards to AS/NZS
2064 (Class A)

Maritime approval

The S7-1200 products are periodically submitted for special agency approvals related to
specific markets and applications. Consult your local Siemens representative if you need
additional information related to the latest listing of exact approvals by part number.

Classification societies:

® ABS (American Bureau of Shipping)
e BV (Bureau Veritas)

® DNV (Det Norske Veritas)

® GL (Germanischer Lloyd)

® | RS (Lloyds Register of Shipping)

® Class NK (Nippon Kaiji Kyokai)

Industrial environments

The S7-1200 automation system is designed for use in industrial environments.

Application Field Noise Emission Requirements Noise Immunity Requirements
Industrial EN 61000-6-4:2007 EN 61000-6-2:2005

Residential environments

The S7-1200 automation system may be used in residential environments if suitable
measures are made to ensure compliance with the Class B limits as specified by EN 55011.

® |nstall the S7-1200 system within a grounded, metallic enclosure

e [nstall proper line filters on supply lines

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 285

Technical specifications

A. 1 General Technical Specifications

Electromagnetic compatibility

Electromagnetic Compatibility (EMC) is the ability of an electrical device to operate as
intended in an electromagnetic environment and to operate without emitting levels of
electromagnetic interference (EMI) that may disturb other electrical devices in the vicinity.

Electromagnetic Compatibility - Immunity per EN 61000-6-2

EN 61000-4-2 8 kV air discharge to all surfaces
Electrostatic discharge 6 kV contact discharge to exposed conductive surfaces
EN 61000-4-3 80 to 100 MHz, 10 V/m, 80% AM at 1 kHz

1-4 t0 2.0 GHz, 3 V/m, 80% AM a 1 kHz
2.0t0 2.7 GHz, 1 V/m, 80% AM at 1 kHz

2 kV, 5 kHz with coupling network to AC and DC system power
2 kV, 5 kHz with coupling clamp to 1/O

Radiated electromagnetic field

EN 61000-4-4
Fast transient bursts

AC systems - 2 kV common mode, 1kV differential mode

DC systems - 2 kV common mode, 1kV differential mode

For DC systems (I/O signals, DC power systems) external protection
is required.

150 kHz to 80 MHz, 10 V RMS, 80% AM at 1kHz

EN 6100-4-5
Surge immunity

EN 61000-4-6
Conducted disturbances

EN 61000-4-11
Voltage dips

AC systems
0% for 1 cycle, 40% for 12 cycles and 70% for 30 cycles at 60 Hz

Electromagnetic Compatibility - Conducted and Radiated Emissions per EN 61000-6-4

Conducted Emissions

EN 55011, Class A, Group 1
0.15 MHz to 0.5 MHz

0.5 MHz to 5 MHz

5 MHz to 30 MHz

Radiated Emissions

EN 55011, Class A, Group 1
30 MHz to 230 MHz

230 MHz to 1 GHz

<79dB (pV) quasi-peak; <66 dB (uV) average
<73dB (pV) quasi-peak; <60 dB (pV) average
<73dB (pV) quasi-peak; <60 dB (uV) average

<40dB (pV/m) quasi-peak; measured at 10m
<47dB (uV/m) quasi-peak; measured at 10m

Environmental conditions

Environmental Conditions - Transport and Storage

EN 60068-2-2, Test Bb, Dry heat and
EN 60068-2-1, Test Ab, Cold

-40° Cto +70° C

EN 60068-2-30, Test Db, Damp heat

25° C to 55° C, 95% humidity

EN 60068-2-14, Test Na, temperature shock

-40° C to +70° C, dwell time 3 hours, 2 cycles

EN 60068-2-32, Free fall

0.3 m, 5 times, product packaging

Atmospheric pressure

1080 to 660h Pa (corresponding to an altitude of -1000 to 3500m)

286

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Technical specifications

A. 1 General Technical Specifications

Environmental Conditions - Operating

Ambient temperature range
(Inlet Air 25 mm below unit)

0° C to 55° C horizontal mounting
0° C to 45° C vertical mounting
95% non-condensing humidity

Atmospheric pressure

1080 to 795 hPa (Corresponding to an altitude of -1000 to 2000m)

Concentration of contaminants

S02: < 0.5 ppm; H2S: < 0.1 ppm; RH < 60% non-condensing

EN 60068-2-14, Test Nb, temperature change

5° C to 55°, 3° C/minute

EN 60068-2-27 Mechanical shock

15 G, 11 ms pulse, 6 shocks in each of 3 axis

EN 60068-2-6 Sinusoidal vibration

DIN rail mount: 3.5mm from 5-9 Hz, 1G from 9 - 150 Hz
Panel Mount: 7.00mm from 5-9 Hz, 2G from 9 to 150 Hz
10 sweeps each axis, 1 octave per minute

High Potential Isolation Test

24 \V//5 V nominal circuits

115/230 V circuits to ground

115/230 V circuits to 115/230 V circuits
115 V/230V circuits to 24 V/5 V circuits

500 VAC (type test of optical isolation boundaries)
1,500 VAC routine test/2500 VDC type test
1,500 VAC routine test/2500 VDC type test
1,500 VAC routine test/4242 VDC type test

Protection Class

® Protection Class | according to 60536 (Protective conductor must be connected to

mounting rail)

Degree of protection

® |P20 Mechanical Protection, EN 60529

® Protects against finger contact with high voltage as tested by standard probe. External
protection required for dust, dirt, water and foreign objects of < 12.5mm in diameter.

Rated voltages

Rated Voltage Tolerance
24VDC 20.4 VDC to 28.8 VDC
120/230 VAC 85 VAC to 264 VAC, 47 to 63 Hz

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

287

Technical specifications

A2 CPUs

NOTICE

When a mechanical contact turns on output power to the S7-1200 CPU, or any digital
signal module, it sends a "1" signal to the digital outputs for approximately 50
microseconds. You must plan for this, especially if you are using devices which respond to
short duration pulses.

Relay electrical service life

The typical performance data supplied by relay vendors is shown below. Actual performance
may vary depending upon your specific application. An external protection circuit that is
adapted to the load will enhance the service life of the contacts.

4000

! @® Service life (x 103 operations)
N ©) ® 250 VAC resistive load,
o ‘\\‘\ 7 30 VDC resistive load
200 NS ® 250 VAC inductive load (p.f=0.4)
S 30 VDC inductive load (L/R=7ms)
@ 100 >\ ~ @ Rated Operating Current (A)
7
—(®
0 1| 2 3 4 5 6 7
®
A.2 CPUs
A.2.1 CPU 1211C Specifications
Technical Specifications
Model CPU 1211C CPU 1211C CPU 1211C
AC/DC/Relay DC/DC/Relay DC/DC/DC
Order number (MLFB) 6ES7 211-1BD30-0XB0 | 6ES7 211-1HD30-0XBO | 6ES7 211-1AD30-0XB0
General
Dimensions W x H x D (mm) 90 x 100 x 75
Weight 420 grams 380 grams 370 grams
Power dissipation 10w 8w
Current available (CM bus) 750 mA max. (5 VDC)
Current available (24 VDC) 300 mA max. (sensor power)

S7-1200 Programmable controller
288 System Manual, 04/2009, ASE02486680-01

Technical specifications

A.2 CPUs
Technical Specifications
Model CPU 1211C CPU 1211C CPU 1211C
AC/DC/Relay DC/DC/Relay DC/DC/DC
Digital input current consumption 4 mA/input used
(24vDC)
CPU Features
User memory 25 Kbytes Work memory / 1 Mbytes Load memory / 2 Kbytes Retentive memory
On-board digital I/0 6 inputs/4 outputs
On-board analog 1/0 2 inputs
Process image size 1024 bytes of inputs/1024 bytes of outputs
Signal modules expansion none
Signal board expansion 1 SB max.
Communication module expansion 3 CMs max.
High-speed counters 3 total
Single phase: 3 at 100 kHz
Quadrature phase: 3 at 80 kHz
Pulse outputs 2 at 1 Hz pulse rate ‘ 2 at 100 kHz pulse rate
Pulse catch inputs 6
Time delay / cyclic interrupts 4 total with 1 ms resolution
Edge interrupts 6 rising and 6 falling (10 and 10 with optional signal board)
Memory card SIMATIC Memory Card (optional)
Real time clock accuracy +/- 60 seconds/month
Real time clock retention time 10 days typ./6 days min. at 40°C (maintenance-free Super Capacitor)
Performance
Boolean execution speed 0.1 ps/instruction
Move Word execution speed 12 ps/instruction
Real Math execution speed 18 psl/instruction
Communication
Number of ports 1
Type Ethernet
Data rates 10/100 Mb/s
Isolation (external signal to PLC Transformer isolated, 1500 VDC
logic)
Cable type CATb5e shielded
Power supply
Voltage range 85 to 264 VAC 20.4 t0 28.8 VDC
Line frequency 47 to 63 Hz --
Input current
CPU only at max. load 60 mA at 120 VAC 300 mA at 24 VDC
30 mA at 240 VAC
CPU with all expansion accessories | 180 mA at 120 VAC 900 mA at 24 VDC
at max. load 90 mA at 240 VAC
Inrush current (max.) 20 A at 264 VAC 12 A at28.8 VDC
Isolation (input power to logic) 1500 VAC Not isolated

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 289

Technical specifications

A2 CPUs

Technical Specifications

Model

CPU 1211C
AC/DC/Relay

CPU 1211C
DC/DC/Relay

CPU 1211C
DC/DC/DC

Hold up time (loss of power)

20 ms at 120 VAC
80 ms at 240 VAC

10 ms at 24 VDC

Internal fuse, not user replaceable

3 A, 250V, slow blow

Sensor power

Voltage range

20.4 to 28.8 VDC | L+ minus 4 VDC min.

Output current rating (max.)

300 mA (short circuit protected)

Maximum ripple noise (<10 MHz)

<1V peak to peak | Same as input line

Isolation (CPU logic to sensor power) | Not isolated
Digital inputs
Number of inputs 6

Type Sink/Source (IEC Type 1 sink)
Rated voltage 24 VVDC at 4 mA, nominal
Continuous permissible voltage 30 VDC, max.

Surge voltage 35 VDC for 0.5 sec.

Logic 1 signal (min.) 15VDC at 2.5 mA

Logic 0 signal (max.) 5VDC at 1 mA

Isolation (field side to logic)

500 VAC for 1 minute

Isolation groups

1

Filter times

0.2,0.4,0.8, 1.6, 3.2, 6.4, and 12.8 ms (selectable in groups of 4)

HSC clock input rates (max.)
(Logic 1 Level = 15 to 26 VDC)

Single phase: 100 KHz
Quadrature phase: 80 KHz

Number of inputs on simultaneously

6

Cable length (meters)

500 shielded, 300 unshielded, 50 shielded for HSC inputs

Analog inputs

Number of inputs 2
Type Voltage (single-ended)
Range Oto10V

Full-scale range (data word)

0 to 27648 (refer to Analog input representation for voltage (Page 310))

Overshoot range (data word)

27,649 to 32,511 (refer to Analog input representation for voltage (Page 310))

Overflow (data word)

32,512 to 32767 (refer to Analog input representation for voltage (Page 310))

Resolution

10 bits

Maximum withstand voltage

35VDC

Smoothing

None, Weak, Medium, or Strong (refer to Analog input response times (Page 310)
for step response times)

Noise rejection

10, 50, or 60 Hz (refer to Analog input response times (Page 310) for sample
rates)

Impedance

=100 KQ

Isolation (field side to logic)

None

Accuracy (25°C / 0 to 55°C)

3.0% / 3.5% of full-scale

Common mode rejection

40 dB, DC to 60 Hz

Operational signal range

Signal plus common mode voltage must be less than +12 V and greater than -12 V

290

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

http://www.siemens.com/automation/support-request

Technical specifications

A2 CPUs

Technical Specifications

Model

CPU 1211C
AC/DC/Relay

CPU 1211C
DC/DC/Relay

CPU 1211C
DC/DC/DC

Cable length (meters)

10 m, shielded twisted pair

Digital outputs

Number of outputs

4

Type

Relay, dry contact

Solid state - MOSFET

Voltage range 510 30 VDC or 5 to 250 VAC 20.4 to 28.8 VDC
Logic 1 signal at max. current - 20 VDC min.
Logic 0 signal with 10 KQ load -- 0.1 VDC max.
Current (max.) 20A 0.5A

Lamp load 30 W DC /200 W AC 5w

ON state resistance 0.2 Q max. when new 0.6 Q max.
Leakage current per point - 10 pA max.

Surge current

7 A with contacts closed

8 A for 100 ms max.

Overload protection

No

Isolation (field side to logic)

1500 VAC for 1 minute (coil to contact)
None (coil to logic)

500 VAC for 1 minute

Isolation resistance

100 MQ min. when new

Isolation between open contacts

750 VAC for 1 minute

Isolation groups

1

Inductive clamp voltage

L+ minus 48 VDC, 1 W
dissipation

Switching delay (Qa.0 to Qa.3) 10 ms max. 1.0 ys max., off to on
3.0 pys max., on to off
Pulse Train Output rate 1 Hz max. 100 KHz max.

(Qa.0 and Qa.2)

Lifetime mechanical (no load)

10,000,000 open/close cycles

Lifetime contacts at rated load

100,000 open/close cycles

Behavior on RUN to STOP

Last value or substitute value (default value 0)

Number of Outputs On
simultaneously

4

Cable length (meters)

500 shielded, 150 unshielded

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

291

Technical specifications

A2 CPUs

Wiring Diagrams

AC (/\/; -

@@@@@@@@@@@@@@Q&%ﬂ==

|L1 N @"u M||1M 0 1 2 3 4 5| [2M 0 1
g it Dla

2

120-240VAC 24VDC n_n 24VDC INPUTS ANALOG

211-1BD30-0XBO

RELAY OUTPUTS

wo 1 2 3/le e e

VDD

©O) 24 VDC Sensor Power Out
Figure A-1 CPU 1211C AC/DC/Relay (6ES7 211-1BD30-0XB0)

@
TR [T T T T —g%

20DV DVVDDD @@@U:

|L+ M|Jf-|u M||1M 0 1 2 3 4 5|e e 2M 0 1
O ity

Dla Al
24VDC 24VDC 24VDC INPUTS ANALOG | |
I | INPUTS —

211-1HD30-0XBO
RELAY OUTPUTS

DQa
Lo 1 2 3/le e e

DD

©O) 24 VDC Sensor Power Out
Figure A-2 CPU 1211C DC/DC/Relay (6ES7 211-1HD30-0XB0)

S7-1200 Programmable controller
292 System Manual, 04/2009, ASE02486680-01

Technical specifications

A.2 CPUs
®
TR (LT T T Py
DC — — DG
I _
ble
[
b ML MM 0 1 2 3 4 5(e @ [2M 0 1
|{}||ﬁ"ma Al|
24VDC 24VDC — 24VDCINPUTS ANALOG J
211-1AD30-0XB0
24DC OUTPUTS
DQa
343M 0 1 2 3le e
T T 7
: M
DC ___|i
) 24 VVDC Sensor Power Out
Figure A-3 CPU 1211C DC/DC/DC (6ES7 211-1AD30-0XB0)
A2.2 CPU 1212C Specifications
Technical Specifications
Model CPU 1212C CPU 1212C CPU 1212C
AC/DC/Relay DC/DC/Relay DC/DC/DC
Order number (MLFB) 6ES7 212-1BD30-0XB0 | 6ES7 212-1HD30-0XB0O | 6ES7 212-1AD30-0XB0
General
Dimensions W x H x D (mm) 90 x 100 x 75
Weight 425 grams 385 grams 370 grams
Power dissipation 1MW 9w
Current available (SM and CM bus) 1000 mA max. (5 VDC)
Current available (24 VDC) 300 mA max. (sensor power)
Digital input current consumption (24 | 4 mA/input used
VDC)
CPU Features
User memory 25 Kbytes Work memory / 1 Mbytes Load memory/ 2 Kbytes Retentive memory
On-board digital I/O 8 inputs/6 outputs
On-board analog 1/0 2 inputs
Process image size 1024 bytes of inputs/1024 bytes of outputs
Signal modules expansion 2 SMs max.
Signal board expansion 1 SB max.
Communication module expansion 3 CMs max.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 293

Technical specifications

A2 CPUs

Technical Specifications

Model CPU 1212C CPU 1212C CPU 1212C
AC/DC/Relay DC/DC/Relay DC/DC/DC
High-speed counters 4 total

Single phase: 3 at 100 kHz and 1 at 30 kHz clock rate
Quadrature phase: 3 at 80 kHz and 1 at 20 kHz clock rate

Pulse outputs

2 at 1 Hz pulse rate ‘ 2 at 100 kHz pulse rate

Pulse catch inputs

8

Time delay / cyclic interrupts

4 total with 1 ms resolution

Edge interrupts

8 rising and 8 falling (12 and 12 with optional signal board)

Memory card

SIMATIC Memory Card (optional)

Real time clock accuracy

+/- 60 seconds/month

Real time clock retention time

10 days typ./6 days min. at 40°C (maintenance-free Super Capacitor)

Performance

Boolean execution speed

0.1 ps/instruction

Move Word execution speed

12 pslinstruction

Real Math execution speed

18 pslinstruction

Communication

Number of ports

1

Type

Ethernet

Data rates

10/100 Mb/s

Isolation (external signal to PLC
logic)

Transformer isolated, 1500 VDC

Cable type CATb5e shielded

Power supply

Voltage range 85 to 264 VAC 20.4 t0 28.8 VDC
Line frequency 47 to 63 Hz -

Input current
CPU only at max. load

CPU with all expansion accessories
at max. load

80 mA at 120 VAC
40 mA at 240 VAC

240 mA at 120 VAC
120 mA at 240 VAC

400 mA at 24 VDC

1200 mA at 24 VDC

Inrush current (max.)

20 A at 264 VAC 12 A at 28.8 VDC

Isolation (input power to logic)

1500 VAC Not isolated

Hold up time (loss of power)

20 ms at 120 VAC
80 ms at 240 VAC

10 ms at 24 VDC

Internal fuse, not user replaceable

3 A, 250V, slow blow

Sensor power

Voltage range

20.4 t0 28.8 VDC | L+ minus 4 VDC min.

Output current rating (max.)

300 mA (short circuit protected)

Maximum ripple noise (<10 MHz)

<1V peak to peak | Same as input line

Isolation (CPU logic to sensor power) | Not isolated
Digital inputs
Number of inputs 8

Type

Sink/Source (IEC Type 1 sink)

Rated voltage

24 VDC at 4 mA, nominal

294

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Technical specifications

A2 CPUs

Technical Specifications

Model CPU 1212C CPU 1212C CPU 1212C
AC/DC/Relay DC/DC/Relay DC/DC/DC
Continuous permissible voltage 30 VDC, max.

Surge voltage

35 VDC for 0.5 sec.

Logic 1 signal (min.)

15VDC at 2.5 mA

Logic 0 signal (max.)

5VDC at 1 mA

Isolation (field side to logic)

500 VAC for 1 minute

Isolation groups

1

Filter times

0.2,0.4,0.8, 1.6, 3.2, 6.4, and 12.8 ms (selectable in groups of 4)

HSC clock input rates (max.)
(Logic 1 Level = 15 to 26 VDC)

Single phase: 100 KHz (la.0 to Ia.5) and 30 KHz (la.6 to la.7)
Quadrature phase: 80 KHz (la.0 to 1a.5) and 20 KHz (la.6 to la.7)

Number of inputs on simultaneously

8

Cable length (meters)

500 shielded, 300 unshielded, 50 shielded for HSC inputs

Analog inputs

Number of inputs 2
Type Voltage (single-ended)
Range Oto10V

Full-scale range (data word)

0 to 27648 (Refer to Analog input representation for voltage (Page 310))

Overshoot range (data word)

27,649 to 32,511 (Refer to Analog input representation for voltage (Page 310))

Overflow (data word)

32,512 to 32767 (Refer to Analog input representation for voltage (Page 310))

Resolution

10 bits

Maximum withstand voltage

35VDC

Smoothing

None, Weak, Medium, or Strong (refer to Analog input response times (Page 310)
for step response times)

Noise rejection

10, 50, or 60 Hz (refer to Analog input response times (Page 310) for sample rates)

Impedance

2100 KQ

Isolation (field side to logic)

None

Accuracy (25°C /0 to 55°C)

3.0% / 3.5% of full-scale

Common mode rejection

40 dB, DC to 60 Hz

Operational signal range

Signal plus common mode voltage must be less than +12 V and greater than -12 V

Cable length (meters)

10 twisted and shielded

Digital outputs

Number of outputs 6

Type Relay, dry contact Solid state - MOSFET
Voltage range 51to 30 VDC or 5 to 250 VAC 20.4 to 28.8 VDC
Logic 1 signal at max. current -- 20 VDC min.

Logic 0 signal with 10 KQ load - 0.1 VDC max.
Current (max.) 20A 05A

Lamp load 30 WDC /200 W AC 5W

ON state resistance 0.2 Q max. when new 0.6 Q max.

Leakage current per point -- 10 yA max.

Surge current 7 A with contacts closed 8 A for 100 ms max.

Overload protection

No

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

295

Technical specifications

A2 CPUs

Technical Specifications

Model

CPU 1212C CPU 1212C
AC/DC/Relay DC/DC/Relay

CPU 1212C
DC/DC/DC

Isolation (field side to logic)

1500 VAC for 1 minute (coil to contact)
None (coil to logic)

500 VAC for 1 minute

Isolation resistance

100 MQ min. when new

Isolation between open contacts

750 VAC for 1 minute

(Qa.0 and Qa.2)

Isolation groups 2 1

Inductive clamp voltage - L+ minus 48 VDC, 1 W
dissipation

Switching delay (Qa.0 to Qa.3) 10 ms max. 1.0 ys max., off to on
3.0 ps max., on to off

Switching delay (Qa.4 to Qa.5) 10 ms max. 50 ys max., off to on
200 ps max., on to off

Pulse Train Output rate 1 Hz max. 100 KHz max.

Lifetime mechanical (no load)

10,000,000 open/close cycles

Lifetime contacts at rated load

100,000 open/close cycles

Behavior on RUN to STOP

Last value or substitute value (default value 0)

Number of Outputs On
simultaneously

6

Cable length (meters)

500 shielded, 150 unshielded

Wiring Diagrams

AC (/\/;

|||—I

iJ“_IIIIIIIIéé

DC

G N,

0N Q| M||1M 0 1 2 3 4 5 6 ,7| |2M 0 1|
g ity Dla Al
T20-240VAC 24VDC 24VDC INPUTS ANALOG
1 INPUTS

212-1BD30-0XB0

RELAY QUTPUTS

1 %0 2 sl s s
.o 1 2 3l2L 4 5

QDD

;ii@ﬁm@w

) 24 VDC Sensor Power Out

Figure A-4 CPU 1212C AC/DC Relay (6ES7 212-1BD30-0XB0)

S7-1200 Programmable controller
296 System Manual, 04/2009, ASE02486680-01

Technical specifications

A2 CPUs

q
|||—I
|||—I

L iJ--_lllllllle‘)é)

DC

@@@@@@@@@@@@@@@@@Ui;‘-_l

|L+ M|J,-|L+ M||1M 0 1 2 3 4 5 6 .7| |2M 0 1|
4 it Dia Al

24VDC 24VDC 24VDCINPUTS ANALOG
| | INPUTS

212-1HD30-0XB0O

RELAY QUTPUTS

[%0 2 sl s s
.o 1 2 3l2L 4 5

QDD

L(+)
N(-@LI] LI] |-lF| H@ﬂ] Ll]
@ 24 VDC Sensor Power Out

Figure A-5 CPU 1212C DC/DC/Relay (6ES7 212-1HD30-0XB0)

1®
LTE %|||||||| éé

+

m

DC

@@@@@@@@@@@@@@@@@Ui;‘_l

|L+ M|J,-|L+ M||1M 0 1 2 3 4 5 6 .7| |2M 0 1|
%4 it Dia Al

1

24VDC 24VDC 24VDCINPUTS ANALOG

INPUTS

212-1AD30-0XB0

24VDC OUTPUTS

DQa |
343M 0 1 2 3 4 5

U,

b
T ﬁuuﬁﬁﬁ
® 24 VDC Sensor Power Out

Figure A-6 CPU 1212C DC/DC/DC (6ES7 212-1AD30-0XB0)

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 297

Technical specifications

A2 CPUs

A23

CPU 1214C Specifications

Technical Specifications

Model CPU 1214C CPU 1214C CPU 1214C
AC/DC/Relay DC/DC/Relay DC/DC/DC

Order number (MLFB) 6ES7 214-1BE30-0XB0 6ES7 214-1HE30-0XBO |6ES7 214-1AE30-0XB0

General

Dimensions W x H x D (mm)

110 x 100 x 75

Weight

475 grams 435 grams 415 grams

Power dissipation

14 W 12W

Current available (SM and CM bus)

1600 mA max. (5 VDC)

Current available (24 VDC)

400 mA max. (sensor power)

Digital input current consumption
(24VDC)

4 mA/input used

CPU Features

User memory

50 Kbytes Work memory / 2 Mbytes Load memory/ 2 Kbytes Retentive memory

On-board digital 1/0

14 inputs/10 outputs

On-board analog 1/0 2 inputs

Process image size 1024 bytes of inputs/1024 bytes of outputs
Signal modules expansion 8 SMs max.

Signal board expansion 1 SB max.

Communication module expansion 3 CMs max.

High-speed counters 6 total

Single phase: 3 at 100 kHz and 3 at 30 kHz clock rate
Quadrature phase: 3 at 80 kHz and 3 at 20 kHz clock rate

Pulse outputs

2 at 1Hz pulse rate | 2 at 100 kHz pulse rate

Pulse catch inputs

14

Time delay / cyclic interrupts

4 total with 1 ms resolution

Edge interrupts

12 rising and 12 falling (14 and 14 with optional signal board)

Memory card

SIMATIC Memory Card (optional)

Real time clock accuracy

+/- 60 seconds/month

Real time clock retention time

10 days typ./6 days min. at 40°C (maintenance-free Super Capacitor)

Performance

Boolean execution speed

0.1 ps/instruction

Move Word execution speed

12 pslinstruction

Real Math execution speed

18 ps/instruction

Communication

Number of ports

1

Type

Ethernet

Data rates

10/100 Mb/s

Isolation (external signal to PLC
logic)

Transformer isolated, 1500 VDC

Cable type

CAT5e shielded

298

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Technical specifications

A2 CPUs

Technical Specifications

Model CPU 1214C CPU 1214C CPU 1214C
AC/DC/Relay DC/DC/Relay DC/DC/DC

Power supply

Voltage range 85 to 264 VAC 20.4 to 28.8 VDC

Line frequency 47 to 63 Hz -

Input current
CPU only at max. load

CPU with all expansion accessories
at max. load

100 mA at 120 VAC
50 mA at 240 VAC

300 mA at 120 VAC
150 mA at 240 VAC

500 mA at 24 VDC

1500 mA at 24 VDC

Inrush current (max.)

20 A at 264 VAC

12 Aat 28.8 VDC

Isolation (input power to logic)

1500 VAC

Not isolated

Hold up time (loss of power)

20 ms at 120 VAC
80 ms at 240 VAC

10 ms at 24 VDC

Internal fuse, not user replaceable

3 A, 250V, slow blow

Sensor power

Voltage range

20.4t0 28.8 VDC

‘ L+ minus 4 VDC min.

Output current rating (max.)

400 mA (short circuit protected)

Maximum ripple noise (<10 MHz)

<1V peak to peak

‘ Same as input line

Isolation (CPU logic to sensor power) | Not isolated

Digital inputs

Number of inputs 14

Type Sink/Source (IEC Type 1 sink)

Rated voltage

24 VDC at 4 mA, nominal

Continuous permissible voltage

30 VDC, max.

Surge voltage

35 VDC for 0.5 sec.

Logic 1 signal (min.)

15VDC at 2.5 mA

Logic 0 signal (max.)

5VDC at 1 mA

Isolation (field side to logic)

500 VAC for 1 minute

Isolation groups

1

Filter times

0.2,0.4,0.8, 1.6, 3.2, 6.4, and 12.8 ms (selectable in groups of 4)

HSC clock input rates (max.)
(Logic 1 Level = 15 to 26 VDC)

Single phase: 100 KHz (la.0 to la.5) and 30 KHz (la.6 to 1b.5)
Quadrature phase: 80 KHz (la.0 to 1a.5) and 20 KHz (la.6 to 1b.5)

Number of inputs on simultaneously

14

Cable length (meters)

500 shielded, 300 unshielded, 50 shielded for HSC inputs

Analog inputs

Number of inputs 2
Type Voltage (single-ended)
Range Oto10V

Full-scale range (data word)

0 to 27648 (Refer to Analog input representation for voltage (Page 310))

Overshoot range (data word)

27,649 to 32,511 (Refer to Analog input representation for voltage (Page 310))

Overflow (data word)

32,512 to 32767 (Refer to Analog input representation for voltage (Page 310))

Resolution

10 bits

Maximum withstand voltage

35VDC

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

299

Technical specifications

A2 CPUs

Technical Specifications

Model

CPU 1214C
AC/DC/Relay

CPU 1214C

DC/DC/Relay

CPU 1214C
DC/DC/DC

Smoothing

None, Weak, Medium, or Strong (refer to Analog input response time (Page 310)

for step response times)

Noise rejection

10, 50, or 60 Hz (refer to Analog input response time (Page 310) for sample rates)

Impedance

=100 KQ

Isolation (field side to logic)

None

Accuracy (25°C / 0 to 55°C)

3.0% / 3.5% of full-scale

Common mode rejection

40 dB, DC to 60 Hz

Operational signal range

Signal plus common mode voltage must be less than +12 V and greater than -12 V

Cable length (meters)

10 twisted and shielded

Digital outputs

Number of outputs 10

Type Relay, dry contact Solid state - MOSFET
Voltage range 51to 30 VDC or 5 to 250 VAC 20.4 t0 28.8 VDC
Logic 1 signal at max. current - 20 VDC min.

Logic 0 signal with 10 KQ load -- 0.1 VDC max.
Current (max.) 20A 0.5A

Lamp load 30 WDC /200 W AC 5w

ON state resistance 0.2 Q max. when new 0.6 Q max.

Leakage current per point - 10 pA max.

Surge current

7 A with contacts closed

8 A for 100 ms max.

Overload protection

No

Isolation (field side to logic)

1500 VAC for 1 minute (coil to contact)
None (coil to logic)

500 VAC for 1 minute

Isolation resistance

100 MQ min. when new

Isolation between open contacts

750 VAC for 1 minute

Isolation groups 2 1

Inductive clamp voltage - L+ minus 48 VDC, 1 W
dissipation

Switching delay (Qa.0 to Qa.3) 10 ms max. 1.0 ys max., off to on
3.0 ps max., on to off

Switching delay (Qa.4 to Qb.1) 10 ms max. 50 ps max., off to on
200 ps max., on to off

Pulse Train Output rate 1 Hz max. 100 KHz max.

(Qa.0 and Qa.2)

Lifetime mechanical (no load)

10,000,000 open/close cycles

Lifetime contacts at rated load

100,000 open/close cycles

Behavior on RUN to STOP

Last value or substitute value (default value 0)

Number of Outputs On
simultaneously

10

Cable length (meters)

500 shielded, 150 unshielded

300

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Technical specifications
A.2 CPUs

Wiring Diagrams

AC(AI;: iJ___IIIIIIIIIIIIIIé(l)

DC

@@@@@@@@@@@@@@@@@@%@@@@F;f

N QL M"WM 0.1 23 4567 0.0 23 4 .5| |2M 0 1
2 i3

Dla DIb Al

120-240VAC 24VDC 24VDC INPUTS ANALOG -
|] INPUTS
I 214-1BE30-0XB0O
RELAY OUTPUTS

R P NP
Lo 1 2 3 42t 5 6 7 0 1

j@@@@@@@@@@@@

:20000e0000]

® 24 VDC Sensor Power Out
Figure A7 CPU 1214C AC/DC/Relay (6ES7 214-1BE30-0XB0)

DC__J____J,._J,. d“_IIIIIIIIIIIIIIé(l)

DC

@@@@@@@@@@@@@@@@@@%@@@@F;_

|L+ MlJ_.|L+ M"WM 01 2 3 45 6 7 01 23 4 .5| |2M 0 1
%4 ity Dla DIb Al
24VDC 24VDC 24VDC INPUTS ANALOG |

1 INPUTS

214-1HE30-0XBO

RELAY OUTPUTS

RN NP
Lo 1 2 3 425 6 7 0 1

LRV

-#0000000000

@ 24 VDC Sensor Power Out
Figure A-8 CPU 1214C DC/DC/Relay (6ES7 214-1HE30-0XB0)

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 301

Technical specifications

A2 CPUs

HLrrr T T

DC

DD DDDDDDDDDDD2| (2D

|L+ M|J.,-|L+ M"WM 0 1 2 3 45 6 7 0 1 2 3 4 ,5| |2M K
A% it Dla

Al

24VDC

24VDC

24VDC INPUTS ANALOG —

INPUTS

1

214-1AE30-0XB0

24VDC OUTPUTS

| Qa DQb |
3L43M 0 1 2 3 4 5 6 7 0 1

QD222

-4 D00ag03000

©O) 24 VDC Sensor Power Out

Figure A-9

302

CPU 1214C DC/DC/DC (6ES7 214-1AE30-0XB0)

S7-1200 Programmable controller

System Manual, 04/2009, A5E02486680-01

Technical specifications

A3 Digital signal modules (SMs)

A.3.1 SM 1221 Digital Input Specifications

A.3 Digital signal modules (SMs)

Technical Specifications

Model

SM 1221 DI 8x24VDC

SM 1221 DI 16x24VDC

Order number (MLFB) 6ES7 221-1BF30-0XB0 6ES7 221-1BH30-0XB0
General

Dimensions W x H x D (mm) 45x 100 x 75

Weight 170 grams 210 grams

Power dissipation 1.5W 25W

Current consumption (SM Bus) 105 mA 130 mA

Current consumption (24 VDC)

4 mA / input used

4 mA / input used

Digital inputs

Number of inputs 8 16
Type Sink/Source (IEC Type 1 sink)

Rated voltage 24 VVDC at 4 mA, nominal

Continuous permissible voltage 30 VDC, max.

Surge voltage 35 VDC for 0.5 sec.

Logic 1 signal (min.) 15 VDC at 2.5 mA

Logic 0 signal (max.) 5VDC at 1 mA

Isolation (field side to logic) 500 VAC for 1 minute

Isolation groups 2 ‘ 4
Filter times 0.2,0.4,0.8, 1.6, 3.2, 6.4, and 12.8 ms (selectable in groups of 4)
Number of inputs on simultaneously |8 ‘ 16

Cable length (meters)

500 shielded, 300 unshielded

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

303

Technical specifications
A.3 Digital signal modules (SMs)

Wiring diagrams

SM 1221 DI 8 x 24 VDC SM 1221 DI 16 x 24 VDC
*] o =L ((((ne =L
2 - L
i LT
=(@222202

L o[M0 1 23 8 @@@@@@@ o

ZE\I/SC\NPUTS %

[@@@@@@@F

4 e|M.O 1 2 3 Q

N e o|2M 4 5 6 7 S

(XT213]

e o3V 0 1 2 31
o e oM 4 5 6 7] Db
= 24VDC INPUTS —‘
§ o olwi's s 7 ES QDD g
2002222
- Y% % %% %,
R
Lttt FINNNE
6ES7 221-1BF30-0XB0 o ;_[--

6ES7 221-1BH30-0XB0

S7-1200 Programmable controller
304 System Manual, 04/2009, ASE02486680-01

Technical specifications

A.3 Digital signal modules (SMs)

A3.2 SM 1222 Digital Output Specifications

Technical Specifications

Model SM 1222 SM1222 SM1222 SM1222
DQ 8xRelay DQ 16xRelay DQ 8x24VDC DQ 16x24VDC

Order number (MLFB) 6ES7 222-1HF30- | 6ES7 222-1HH30- | 6ES7 222-1BF30- | 6ES7 222-1BH30-
0XBO 0XBO 0XB0 0XB0

General

Dimensions W x H x D (mm) 45x 100 x 75

Weight 190 grams 260 grams 180 grams 220 grams

Power dissipation 45W 85W 1.5W 25W

Current consumption (SM Bus) 120 mA 135 mA 120 mA 140 mA

Current consumption (24 VDC) 11 mA / Relay coil used -

Digital Outputs

Number of outputs 8 16 8 16

Type

Relay, dry contact

Solid state - MOSFET

Voltage range

5to 30 VDC or 5 to 250 VAC

20.4t0 28.8 VDC

Logic 1 signal at max. current -- 20 VDC min.
Logic 0 signal with 10K Q load -- 0.1 VDC max.
Current (max.) 20A 0.5A

Lamp load 30 W DC/200 W AC 5W

On state contact resistance 0.2 Q max. when new 0.6 Q max.
Leakage current per point - 10 yA max.

Surge current

7 A with contacts closed

8 A for 100 ms max.

Overload protection

No

Isolation (field side to logic)

1500 VAC for 1 minute (coil to contact)
None (coil to logic)

500 VAC for 1 minute

Isolation resistance

100 MQ min. when new

Isolation between open contacts

750 VAC for 1 minute

Isolation groups 2 ‘ 4 1 1

Current per common (max.) 10A 4 A 8A
Inductive clamp voltage -- L+ minus 48 V, 1 W dissipation
Switching delay 10 ms max. 50 ps max. off to on

200 ps max. on to off

Lifetime mechanical (no load)

10,000,000 open/close cycles

Lifetime contacts at rated load

100,000 open/close cycles

Behavior on RUN to STOP

Last value or substitute value (default value 0)

Number of outputs on simultaneously

8 16

E

Cable length (meters)

500 shielded, 150 unshielded

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

305

Technical specifications

A.3 Digital signal modules (SMs)

Wiring Diagrams

SM 1222 DQ 8 x Relay SM 1222 DQ 8 x 24 VDC
ST ey
+ L(+)| *
I T T 1 I T T 1
S QDD S QD22
G M[LZ]iL 0 1 2 L+J}M 0 1 2 3
74VDC RECAY OUTPOTS WOC FBCOUTOT
E E ~
~

RELAY OUTPUTS 24VDC OUTPUTS
DQa

a
®|2l 3 4 5 6 7 ® ® o |4 5 6 7

2222

222-1HF30-0XB0 [X]2]3]
222-1BF30-0XB0 [X]2]3]

L(+)

NE)

6ES7 222-1HF30-0XB0 6ES7 222-1BF30-0XB0
SM 1222 DQ 16 x Relay SM 1222 DQ 16 x 24 VDC
N -1
~A[ennnn | ool
<] @0onn Nl (oo
%@@@@@@@ E %@@@@@@@ E
[@@@@@@@F @@@@@@@}‘*
\z,ﬁc Lt ML 0 .1 2 3] pogf \z,ﬁcwo 0 12 3] pqal
L e|2L 4 5 6 7 ‘QJ_.-OOA.S.GJ/
N
e o o o3l 0 1] e o o0 1 2 3]
[2 3 45 6 71 ﬂ o o o7 5 6 71 ﬂ
(@22222||: (@@@@@@@’5
= Q@222 E Y% %% %, E
S| RER ijan
SYIGHHT i
6ES7 222-1HH30-0XB0O 6ES7 222-1BH30-0XB0

S7-1200 Programmable controller
306 System Manual, 04/2009, ASE02486680-01

Technical specifications

A3.3

SM 1223 Digital Input/Output Specifications

A.3 Digital signal modules (SMs)

Technical Specifications

Model SM 1223 DI 8x24 | SM 1223 DI 16x24 | SM 1223 DI 8x24 | SM 1223 DI 16x24
VDC, DQ 8xRelay |VDC, DQ VDC, DQ 8x24 VDC, DQ16x24

16xRelay vDC vDC

Order number (MLFB) 6ES7 223-1PH30- | 6ES7 223-1PL30- |6ES7 223-1BH30- | 6ES7 223-1BL30-
0XBO0 0XBO 0XBO 0XBO0

Dimensions W x H x D (mm) 45x 100 x 75 70x 100 x 75 45x100x 75 70x100x 75

Weight 230 grams 350 grams 210 grams 310 grams

Power dissipation 55W 10W 25W 45W

Current consumption (SM Bus) 145 mA 180 mA 145 mA 185 mA

Current consumption (24 VDC) 4 mA / Input used 4 mA / Input used
11 mA / Relay coil used

Digital Inputs

Number of inputs 8 16 8 16

Type Sink/Source (IEC Type 1 sink)

Rated voltage 24 VVDC at 4 mA, nominal

Continuous permissible voltage 30 VDC max.

Surge voltage 35 VDC for 0.5 sec.

Logic 1 signal (min.) 15 VDC at 2.5 mA

Logic 0 signal (max.) 5VDC at 1 mA

Isolation (field side to logic) 500 VAC for 1 minute

Isolation groups 2 ‘ 2 ‘ 2 ‘ 2

Filter times 0.2,0.4,0.8, 1.6, 3.2, 6.4, and 12.8 ms, selectable in groups of 4

Number of inputs on simultaneously |8 ‘ 16 ‘ 8 ‘ 16

Cable length (meters) 500 shielded, 300 unshielded

Digital Outputs

Number of outputs 8 16 8 16

Type Relay, dry contact Solid state - MOSFET

Voltage range 51to 30 VDC or 5 to 250 VAC 20.4 t0 28.8 VDC

Logic 1 signal at max. current - 20 VDC, min.

Logic 0 signal with 10 KQ load -- 0.1 VDC, max.

Current (max.) 20A 0.5A

Lamp load 30 WDC /200 W AC 5w

ON state contact resistance 0.2 Q max. when new 0.6 Q max.

Leakage current per point - 10 pA max.

Surge current 7 A with contacts closed 8 A for 100 ms max.

Overload protection No

Isolation (field side to logic) 1500 VAC for 1 minute (coil to contact) | 500 VAC for 1 minute
None (coil to logic)

Isolation resistance 100 MQ min. when new --

Isolation between open contacts 750 VAC for 1 minute -

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

307

Technical specifications

A.3 Digital signal modules (SMs)

Technical Specifications

Model SM 1223 DI 8x24 | SM 1223 DI 16x24 | SM 1223 DI 8x24 | SM 1223 DI 16x24
VDC, DQ 8xRelay |VDC, DQ VDC, DQ 8x24 VDC, DQ16x24
16xRelay VDC VDC
Isolation groups 2 4 1 1
Current per common 10A 8A 4 A 8A
Inductive clamp voltage -- L+ minus 48 V, 1 W dissipation
Switching delay 10 ms max. 50 ps max. off to on

200 ps max. on to off

Lifetime mechanical (no load)

10,000,000 open/close cycles

Lifetime contacts at rated load

100,000 open/close cycles

Behavior on RUN to STOP

Last value or substitute value (default value 0)

Number of outputs on simultaneously

8 16

E 16

Cable length (meters)

500 shielded, 150 unshielded

Wiring diagrams

SM 1223 DI 8 x 24 VDC, DQ 8 x Relay

DC

SM1223 DI 16 x 24 VDC, DQ 16 x Relay

e

ST T

DC

|

T T

kst
?

0
s T 1

t@@@@@@@

24VDCIN

A MM 0 1 2 3] pa
L oeM 4 5 6 7

=

=

S %% %% %% %% %%,
t@@@@@@@@@@@
QCIHJ_.MFEO '1.1'2.23.3V4.4‘5.5‘6.6'7.|7D|‘;|b |

PUTS " |

24VDC IN|

e oL 0 1 2 3]
e o2l 4 5 6 71DQa

@022,

— 4

223-1PH30-0XB0 [X]2]3]
 \

ELAY OUTPUTS.

=

%

MCo 1 2 3lef2L 4 5 6 710Q4a
[3L0 1 2 3lefdl 4 5 6 .71DQb

QOO0

ELAY OUTPUTS.

] e

%% %% % %% %% %%,

QLI (@]

L(+) L(+)

SUIHY U

6ES7 223-1PH30-0XB0

6ES7 223-1PL30-0XB0

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Technical specifications

SM 1223 DI 8 x 24 VDC, DQ 8 x 24 VDC
IR

o
oM LTIT T

PUTS II I

% G %% %% %%,

QD022

2%
Ve[MIM 0 1 2 3] pa
L eM 4 5 6 7

—
24VDC INI

e o o0 1 2 31
e o o[4 5 6 7] DQa

QD022

4VDC OUTPUTS.

e

leoeddee
10

i

6ES7 223-1BH30-0XB0

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

A.3 Digital signal modules (SMs)

SM 1223 DI 16 x 24 VDC, DQ 16 x 24 VDC
IRERAAAAAAA

o T T

=3
EE;%@@@@@@@@@@@

QD22 }

%du MIIM 0 1 2 3 4 5 6 7|Dla
U O L eM.0 1 2 3 4 5 6 7

24VDC INPUTS

~
fﬂ .o oll.o 123 4 .5%
i e o [0 1 2 3 4 5 6 7|DQb
- @@@@@@@@@@@F
E%fﬁ@@@@@@@@@@@ -
=
(I a1

i

6ES7 223-1BL30-0XB0O

309

Technical specifications

A.4 Analog signal modules (SMs)

A4

A4

Analog signal modules (SMs)

SM 1231, SM 1232, SM 1234 Analog Specifications

Technical Specifications

Model SM 1231 Al 4x13bit SM 1234 Al 4x13bit SM 1232 AQ 2x14bit
AQ 2x14bit

Order number (MLFB) 6ES7 231-4HD30-0XBO | 6ES7 234-4HE30-0XBO | 6ES7 232-4HB30-0XB0

General

Dimensions W x H x D (mm) 45x100 x 75

Weight 180 grams 220 grams 180 grams

Power dissipation 15W 20W 15W

Current consumption (SM Bus) 80 mA

Current consumption (24 VDC) 45 mA ‘ 60 mA (no load) ‘ 45 mA (no load)

Analog Inputs

Number of inputs 4 0

Type Voltage or Current (differential) --
Selectable in groups of 2
Range +10V, x5V, 2.5V, or 0 to 20 mA -

Full scale range (data word)

-27,648 to 27,648

Overshoot/undershoot range
(data word)

Voltage: 32,511 to 27,649 / -27,649 to -32,512
Current: 32,511 to 27,649 / 0 to -4864

(Refer to Analog input representation for voltage,
Analog input representation for current (Page 310))

Overflow/underflow (data word)

Voltage: 32,767 to 32,512 /-32,513 to -32,768
Current: 32,767 to 32,512 / -4865 to -32,768

(Refer to Analog input representation for voltage,
Analog input representation for current (Page 310))

Resolution

12 bits + sign bit

Maximum withstand voltage/current

+35 V / +40 mA

Smoothing

None, weak, medium, or strong (refer to Analog input
response times (Page 310) for step response times)

Noise rejection

400, 60, 50, or 10 Hz (refer to Analog input response
times (Page 310) for sample rates)

Impedance

> 9 MQ (voltage) / 250 Q (current)

Isolation (field side to logic)

None

Accuracy (25°C / 0 to 55°C)

+0.1% / £0.2% of full scale

Analog to digital conversion time

625 ps (400 Hz rejection)

Common mode rejection

40 dB, DC to 60 Hz

Operational signal range

Signal plus common mode voltage must be less than
+12 V and greater than -12 V

Cable length (meters)

10 meters, twisted and shielded

310

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Technical specifications

A.4 Analog signal modules (SMs)

Technical Specifications

Model SM 1231 Al 4x13bit SM 1234 Al 4x13Dbit SM 1232 AQ 2x14bit
AQ 2x14bit
Analog Outputs
Number of outputs 0 2
Type - Voltage or current
Range -- +10 V or 0 to 20 mA
Resolution - Voltage: 14 bits
Current: 13 bits
Full scale range (data word) -- Voltage: -27,648 to 27,648
Current: 0 to 27,648
(Refer to Analog output representation for voltage,
Analog output representation for current (Page 310))
Accuracy (25°C / 0 to 55°C) -- +0.3% / £0.6% of full scale
Settling time (95% of new value) - Voltage: 300 pS (R), 750 pS (1 uF)
Current: 600 pS (1 mH), 2 ms (10 mH)
Load impedance -- Voltage: = 1000 Q
Current: <600 Q
Behavior on RUN to STOP -- Last value or substitute value (default value 0)
Isolation (field side to logic) -- none
Cable length (meters) 10 meters twisted and shielded
Diagnostics
Overflow/underflow Yes

Note: If a voltage greater than +30 VDC or less than -15 VDC is applied to the
input, the resulting value will be unknown and the corresponding overflow or
underflow may not be active.

Short to ground (voltage mode only) | No Yes on outputs Yes
Wire break (current mode only) No Yes on outputs Yes
24 VDC low voltage Yes

Analog input response time

SM Analog Modules Step Response (ms)

0V to 10V measured at 95%

Smoothing Selection

Rejection Frequency

400 Hz 60 Hz 50 Hz 10 Hz
None 4 18 22 100
Weak 9 52 63 320
Medium 32 203 241 1200
Strong 61 400 483 2410
Sample Rate 0.625 4.17 5 25

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

311

Technical specifications
A.4 Analog signal modules (SMs)

CPU Analog Input Step Response (ms)
0V to 10V measured at 95%

Smoothing Selection Rejection Frequency

60 Hz 50 Hz 10 Hz
None 63 65 130
Weak 84 93 340
Medium 221 258 1210
Strong 424 499 2410
Sample Rate 4.17 5 25

Analog input representation for voltage

System Voltage Measuring Range
Decimal | Hexadecimal 10V 5V 2.5V Oto10V
32767 7FFF 11.851V 5926V |2.963V Overflow 11.851V Overflow
32512 7F00
32511 TEFF 11.759 V 5879V [2940V Overshoot range 11.759 V Overshoot
27649 6C01 range
27648 6C00 10V 5V 25V Rated range 10V Rated range
20736 5100 75V 3.75V 1.875V 75V
1 1 361.7 v 180.8 uyv |90.4 pv 361.7 uv
0 0 oV oV oV oV
-1 FFFF Negative
-20736 | AF00 75V -3.75V |-1.875V values are not
supported
-27648 9400 -10V -5V 25V
-27649 93FF Undershoot range
-32512 8100 -11.759V |-5.879V |-2.940V
-32513 80FF Underflow
-32768 8000 -11.851V |-5926V |[-2.963V
Analog input representation for current

System Current Measuring Range

Decimal Hexadecimal |0 mA to 20 mA

32767 TFFF 23.70 mA Overflow

32512 7F00

32511 TEFF 23.52 mA Overshoot range

27649 6C01

27648 6C00 20 mA Rated range

S7-1200 Programmable controller
312 System Manual, 04/2009, ASE02486680-01

Technical specifications

A.4 Analog signal modules (SMs)

System Current Measuring Range
Decimal Hexadecimal |0 mA to 20 mA
20736 5100 15 mA
1 1 723.4 nA
0 0 0 mA
-1 FFFF Undershoot range
-4864 EDOO -3.52 mA
-4865 ECFF Underflow
-32768 8000
Analog output representation for voltage
System Voltage Output Range
Decimal Hexadecimal |+ 10V
32767 7TFFF 0.00Vv Overflow, off power
32512 7F00
32511 TEFF 11.76 V Overshoot range
27649 6CO01
27648 6C00 0V Rated range
20736 5100 75V
1 1 361.7puV
0 0 oV
-1 FFFF -361.7uV
-20736 AF00 7.5V
-27648 9400 -10V
-27649 93FF Undershoot range
-32512 8100 -11.76 V
-32513 80FF Underflow, off power
-32768 8000 0.00 vV
Analog output representation for current
System Current Output Range
Decimal Hexadecimal | 20 mA
32767 7FFF 23.70 mA Overflow
32512 7F00
32511 TEFF 23.52 mA Overshoot range
27649 6C01
27648 6C00 20 mA Rated range
20736 5100 15 mA

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

313

Technical specifications
A.4 Analog signal modules (SMs)

System Current Output Range
Decimal Hexadecimal |+ 20 mA
1 1 723.4 nA
0 0 0mA
-1 FFFF Undershoot range
-32512 8100
-32513 80FF Underflow
-32768 8000
Wiring Diagrams
SM 1231 Al x 13 Bit SM 1234 Al 4 x 13 Bit

Dcfll?)fﬁ) ?&)vm Dc__J‘__lj'-_é}) _g})\/orl

+ - - +]

L

G % %%,

% QD) F %

24VDC ANALOG INPUTS

Wl

|
ANALOG

L Q222D

Vo M Lo o 1]
e @& o |2+ 2-|3+ 3-

e o oM 0IMM 11 AQ

(XT213]

(XT213]

% :INALOG!L\I‘PUTS g QDD é
S e e e 23 3 2 3
Hoeooce ﬁ booooos E
| |
L8 10
6ES7 231-4HD30-0XB0 6ES7 234-4HE30-0XB0

S7-1200 Programmable controller
314 System Manual, 04/2009, ASE02486680-01

Technical specifications

A.4 Analog signal modules (SMs)

SM 1232 AQ 2 x 14 bit
TR

bC ——
+

D222,

Lt M[L o o o o

24VDC

232-4HB30-0XB0 [X]2]3]

6ES7 232-4HB30-0XB0

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 315

Technical specifications

A.5 Signal boards (SBs)

A.5 Signal boards (SBs)

A.5.1 SB 1223 2 X 24 VVDC Input / 2 X 24 VDC Output Specifications

Digital signal board specifications

Technical Data

Model | SB 1223 DI 2x24VDC, DQ 2x24VDC
Order number (MLFB) ‘ 6ES7 223-0BD30-0XB0

General

Dimensions W x H x D (mm) 38 x62x 21

Weight 40 grams

Power dissipation 1.0WwW

Current consumption (SM Bus) 50 mA

Current consumption (24 VDC)

4 mA / Input used

Digital inputs

Number of inputs

2

Type

IEC Type 1 sink

Rated voltage

24 VDC at 4 mA, nominal

Continuous permissible voltage

30 VDC, max.

Surge voltage

35 VDC for 0.5 sec.

Logic 1 signal (min.)

15VDC at 2.5 mA

Logic 0 signal (max.)

5VDC at 1 mA

HSC clock input rates (max.)

20 kHz (15 to 30 VDC)
30 kHz (15 to 26 VDC)

Isolation (field side to logic)

500 VAC for 1 minute

Isolation groups

1

Filter times

0.2,0.4,0.8,1.6,3.2,6.4,and 12.8 ms
Selectable in groups of 2

Number of inputs on simultaneously

2

Cable length (meters)

500 shielded, 300 unshielded

Digital Outputs

Number of outputs

2

Output type

Solid state - MOSFET

Voltage range

20.4t0 28.8 VDC

Logic 1 signal at max. current 20 VDC min.
Logic 0 signal with 10K Q load 0.1 VDC max.
Current (max.) 05A

Lamp load 5W

On state contact resistance 0.6 Q max.
Leakage current per point 10 pA max.
Pulse Train Output rate 20 KHz max.

316

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Technical specifications

A.5 Signal boards (SBs)

Technical Data

Model

SB 1223 DI 2x24VDC, DQ 2x24VDC

Surge current

5 A for 100 ms max.

Overload protection

No

Isolation (field side to

logic)

500 VAC for 1 minute

Isolation groups

1

Currents per common

1A

Inductive clamp voltage

L+ minus 48 V, 1 W dissipation

Switching delay

2 ps max. off to on
10 pys max. on to off

Behavior on RUN to STOP

Last value or substitute value (default value 0)

Number of outputs on

simultaneously

2

Cable length (meters)

500 shielded, 150 unshielded

SB 1223 2 x 24 VDC Input / 2 x 24 VDC Output wiring diagram

SB 1223 DCIDC
DI 2x24VDC/ DQ 2x24VDC 0.5A

6ES7 223-0BD30-0XB0O

ooono
01
Dle
DQe
foa 1
oooo
I:l 24VDC Dle DQe
Q00022
L
|

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

317

Technical specifications

A.5 Signal boards (SBs)

A.5.2 SB 1232 1 Analog Output Specifications

Analog signal board specifications

Technical Data

Model | SB 1223 AQ 1x12bit
Order no. (MLFB) | 6ES7 232-4HA30-0XBO
General

Dimensions W x H x D (mm)

38 x 62 x 21 mm

Weight 40 grams
Power dissipation 1.5W
Current consumption (SM Bus) 15 mA

Current consumption (24 VDC)

25 mA (no load)

Analog Outputs

Number of outputs

1

Type Voltage or current
Range +10 Vor 0 to 20 mA
Resolution Voltage: 12 bits

Current: 11 bits

Full scale range (data word)

Voltage: -27,648 to 27,648
Current: 0 to 27,648

Accuracy (25°C / 0 to 55°C)

+0.5% / £1% of full scale

Settling time (95% of new value)

Voltage: 300 pS (R), 750 pS (1 uF)
Current: 600 pS (1 mH), 2 ms (10 mH)

Load impedance

Voltage: =2 1000 Q
Current: £ 600 Q

Behavior on RUN to STOP

Last value or substitute value (default value 0)

Isolation (field side to logic)

None

Cable length (meters)

10 meters, twisted and shielded

Diagnostics

Overflow/underflow Yes
Short to ground (voltage mode only) Yes
Wire break (current mode only) Yes

318

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Technical specifications

A.5 Signal boards (SBs)

SB 1232 1 x Analog Output wiring diagram

SB 1232 AQ
AQ 1x12 BIT +/- 10VDC 0-20mA

6ES7 232-4HA30-0XBO
oooo

AQ
0

I%H.- o o 0
Q000D

I

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 319

Technical specifications

A.6 Communication modules (CMs)

A.6 Communication modules (CMs)
A.6.1 CM 1241 RS485 Specifications
Table A- 1 Communication Module CM 1241 RS485

Technical Data

Order no. (MLFB)

6ES7 241-1CH30-0XB0O

Dimensions and weight

Dimensions

30 x 100 x 75 mm

Weight

150 grams

Transmitter and Receiver

Common mode voltage range

-7 Vto+12V, 1 second, 3 VRMS continuous

Transmitter differential output voltage

2V min.atRL =100 Q
1.5V min.atRL=54 Q

Termination and bias

10K Q to +5 V on B, PROFIBUS Pin 3
10K Q to GND on A, PROFIBUS Pin 8

Receiver input impedance

5.4K Q min. including termination

Receiver threshold/sensitivity

+/- 0.2 V min., 60 mV typical hysteresis

Isolation
RS485 signal to chassis ground
RS485 signal to CPU logic common

500 VAC, 1 minute

Cable length, shielded 1000 m max.

Power supply specification

Power loss (dissipation) 1.1W

From +5VDC 220 mA

Pin Description Connector Pin Description

1 GND Logic or communication ground 6 PWR +5V with 100 ohm series resistor: Output

2 Not connected ° j 7 Not connected

3 TxD+ Signal B (RxD/TxD+): Input/Output 8 , |8 TXD- Signal A (RxD/TxD-): Input/Output

4 RTS Request to send (TTL level): Output |’) 9 Not connected

5 GND Logic or communication ground ’ 1 SHELL Chassis ground

S7-1200 Programmable controller

320 System Manual, 04/2009, ASE02486680-01

Technical specifications

A.7 SIMATIC memory cards
A.6.2 CM 1241 RS232 Specifications

Communication Module CM 1241 RS232

Technical Data

Order no. (MLFB)

6ES7 241-1AH30-0XB0

Dimensions and weight

Dimensions

30 x 100 x 75 mm

Weight

150 grams

Transmitter and Receiver

Transmitter output voltage

+/-5V min. at RL=3K Q

Transmit output voltage

+/- 15 VDC max.

Receiver input impedance

3 KQ min.

Receiver threshold/sensitivity

0.8 V min. low, 2.4 max. high
0.5 V typical hysteresis

Receiver input voltage

+/- 30VDC max.

Isolation
RS 232 signal to chassis ground
RS 232 signal to CPU logic common

500 VAC, 1 minute

Cable length, shielded 10 m max.

Power supply specification

Power loss (dissipation) 1.1W

From +5 VDC 220 mA

Pin Description Connector Pin Description

1 DCD Data carrier detect: Input 6 DSR Data set ready: Input

2 RxD Received data from DCE: Input sl @ o 7 RTS Request to send: Output
3 TxD Transmitted data to DCE: Output e g 8 CTS Clear to send: Input

4 DTR Data terminal ready: Output ol O o) 9RI Ring indicator (not used)
5 GND Logic ground |9 (e} SHELL Chassis ground

A7 SIMATIC memory cards

Memory card specifications

Order Number Capacity
6ES7 954-8LF00-0AA0 24 MB
6ES7 954-8LB00-0AA0 2 MB

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

321

Technical specifications

A.8 Input simulators

A.8 Input simulators
Model 8 Position Simulator 14 Position Simulator
Order number (MLFB) B6ES7 274-1XF30-0XA0 B6ES7 274-1XH30-0XA0
Dimensions W x H x D (mm) 43 x 35x 23 67 x 35 x 23
Weight 20 grams 30 grams
Points 8 14
Used with CPU CPU 1211C, CPU 1212C CPU 1214C

A warninG

These input simulators are not approved for use in Class | DIV 2 or Class | Zone 2
hazardous locations. The switches present a potential spark hazard/explosion hazard if
used in a Class | DIV 2 or Class | Zone 2 location.

8 Position Simulator

@@@ 25 mm

A rararir

DDV @@@L

U N+ MM 0 1 2 3 4 5 6 7] [M0 1
ht5 Dla

Al

120-240VAC 24VDC 24VDC INPUTS

1

ANALOG
INPUTS

6ES7 274-1XF30-0XA0

322

@® 24 VDC sensor power out

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Technical specifications

A.8 Input simulafors

14 Position Simulator
® 24 VDC sensor

ﬁ power out

@2] Y & 5
ST

Q

INJ

Al

120-240VAC 24VDC 24VDCINPUTS ANALOG
| | INPUTS

|L1 N QL+ M||1M 0 1 2 3 45 6 7 0 1 2 3 4 .5| |2M 0 1
g it Dla

l_|l_|l_|l_|l_|l_|l_|l_|l_|l_|l_|l_|l_|l_|l_|l_|lJ
DDV D) @@@ﬁ

6ES7 274-1XH30-0XA0

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01 323

Technical specifications

A.8 Input simulators

S7-1200 Programmable controller
324 System Manual, 04/2009, ASE02486680-01

Calculating a power budget B

The CPU has an internal power supply that provides power for the CPU itself, for any
expansion modules, and for other 24 VDC user power requirements.

There are three types of expansion modules:

® Signal modules (SM) are installed on the right-side of the CPU. Each CPU allows a
maximum number of signal modules possible without regard to the power budget.

— CPU 1214 allows 8 signal modules
— CPU 1212 allows 2 signal modules
— CPU 1211 allows no signal modules

® Communication modules (CM) are installed on the left-side of the CPU. A maximum of 3
communication modules is allowed for any CPU without regard to the power budget.

e Signal boards (SB) are installed on top of the CPU. A maximum of 1 signal board is
allowed for any CPU.

Use the following information as a guide for determining how much power (or current) the
CPU can provide for your configuration.

Each CPU supplies both 5 VDC and 24 VDC power:

® The CPU provides 5 VDC power for the expansion modules when an expansion module
is connected. If the 5 VDC power requirements for expansion modules exceed the power
budget of the CPU, you must remove expansion modules until the requirement is within
the power budget.

® Each CPU has a 24 VDC sensor supply that can supply 24 VDC for local input points or
for relay coils on the expansion modules. If the power requirement for 24 VDC exceeds
the power budget of the CPU, you can add an external 24 VDC power supply to provide
24 VDC to the expansion modules. You must manually connect the 24 VDC supply to the
input points or relay coils.

AWARNING

Connecting an external 24 VDC power supply in parallel with the DC sensor supply can
result in a conflict between the two supplies as each seeks to establish its own preferred
output voltage level.

The result of this conflict can be shortened lifetime or immediate failure of one or both
power supplies, with consequent unpredictable operation of the PLC system.
Unpredictable operation could result in death, severe personal injury and/or property
damage.

The DC sensor supply on the CPU and any external power supply should provide power
to different points. A single connection of the commons is allowed.

Some of the 24V power input ports in the PLC system are interconnected, with a logic
common circuit connecting multiple M terminals. The CPU 24V power supply input, the SM
relay coil power input, and a non-isolated analog power supply input are examples of circuits
that are interconnected when designated as not isolated in the data sheets. All non-isolated
M terminals must connect to the same external reference potential.

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 325

Calculating a power budget
A.8 Input simulators

A warninG

Connecting non-isolated M terminals to different reference potentials will cause unintended
current flows that may cause damage or unpredictable operation in the PLC and connected
equipment.

Such damage or unpredictable operation could result in death, severe personal injury
and/or property damage.

Always be sure that all non-isolated M terminals in a PLC system are connected to the
same reference potential.

Information about the power budgets of the CPUs and the power requirements of the signal
modules is provided in the technical specifications (Page 283).

Note

Exceeding the power budget of the CPU may result in not being able to connect the
maximum number of modules allowed for your CPU.

S7-1200 Programmable controller
326 System Manual, 04/2009, ASE02486680-01

Calculating a power budget
B. 1 Calculating a sample power requirement

B.1 Calculating a sample power requirement

The following example shows a sample calculation of the power requirements for a PLC that
includes a CPU 1214C AC/DC/Relay, 3 x SM 1223 8 DC In/8 Relay Out, and 1 x SM 1221 8
DC In. This example has a total of 46 inputs and 34 outputs.

Note

The CPU has already allocated the power required to drive the internal relay coils. You do
not need to include the internal relay coil power requirements in a power budget calculation.

The CPU in this example provides sufficient 5 VDC current for the SMs, but does not provide
enough 24 VVDC current from the sensor supply for all of the inputs and expansion relay
coils. The I/O requires 448 mA and the CPU provides only 400 mA. This installation requires
an additional source of at least 48 mA at 24 VDC power to operate all the included 24 VDC
inputs and outputs.

CPU power budget 5vDC 24 VDC
CPU 1214C AC/DC/Relay 1600 mA 400 mA

Minus
System requirements 5vDC 24VDC
CPU 1214C, 14 inputs - 14 * 4 mA = 56 mA
3 SM 1223, 5V power 3*145 mA =435 mA -
1 SM 1221, 5V power 1*105 mA =105 mA -
3 SM 1223, 8 inputs each - 3*8*4mA=96mA
3 SM 1223, 8 relay coils each - 3*8*11 mA =264 mA
1 SM 1221, 8 inputs - 8*4 mA=32mA
Total requirements 540 mA 448 mA

Equals
Current balance 5vDC 24VDC
Current balance total 1060 mA (48 mA)

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 327

Calculating a power budget

B.2 Calculating your power requirement

B.2 Calculating your power requirement

Use the following table to determine how much power (or current) the S7-1200 CPU can
provide for your configuration. Refer to the technical specifications (Page 283) for the power
budgets of your CPU model and the power requirements of your signal modules.

CPU power budget 5VDC 24 VDC
Minus
System requirements 5VvDC 24 VDC
Total requirements
Equals
Current balance 5VDC 24 VDC
Current balance total

328

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Order numbers

CPUs Order Number

CPU 1211C CPU 1211C DC/DC/DC 6ES7 211-1AD30-0XB0
CPU 1211C AC/DC/Relay 6ES7 211-1BD30-0XB0
CPU 1211C DC/DC/Relay 6ES7 211-1HD30-0XB0

CPU 1212C CPU 1212C DC/DC/DC 6ES7 212-1AD30-0XB0
CPU 1212C AC/DC/Relay 6ES7 212-1BD30-0XB0
CPU 1212C DC/DC/Relay 6ES7 212-1HD30-0XB0

CPU 1214C CPU 1214C DC/DC/DC 6ES7 214-1AE30-0XB0

CPU 1214C AC/DC/Relay

6ES7 214-1BE30-0XB0

CPU 1214C DC/DC/Relay

6ES7 214-1HE30-0XB0

Signal modules, communication modules, and signal boards

Order Number

Signal modules

SM 1221 8 x 24 VDC Input

6ES7 221-1BF30-0XB0

SM 1221 16 x 24 VDC Input

6ES7 221-1BH30-0XB0

SM 1222 8 x 24 VDC Output

6ES7 222-1BF30-0XB0

SM 1222 16 x 24 VDC Output

6ES7 222-1BH30-0XB0O

SM 1222 8 x Relay Output

6ES7 222-1HF30-0XB0

SM 1222 16 x Relay Output

6ES7 222-1HH30-0XB0O

SM 1223 8 x 24 VDC Input / 8 x 24 VDC Output

6ES7 223-1BH30-0XB0

SM 1223 16 x 24 VDC Input / 16 x 24 VDC Output

6ES7 223-1BL30-0XB0O

SM 1223 8 x 24 VDC Input / 8 x Relay Output

6ES7 223-1PH30-0XB0

SM 1223 16 x 24 VDC Input / 16 x Relay Output

6ES7 223-1PL30-0XB0

SM 1231 4 x Analog Input

6ES7 231-4HD30-0XB0

SM 1232 2 x Analog Input

6ES7 232-4HB30-0XB0

SM 1234 4 x Analog Input / 2 x Analog Output

6ES7 234-4HE30-0XB0

Communication
modules

CM 1241 RS232

6ES7 241-1AH30-0XB0

CM 1241 RS485

6ES7 241-1CH30-0XB0O

Signal boards

SB 1223 2 x 24 VDC Input / 2 x 24 VDC Output

6ES7 223-0BD30-0XB0O

SB 1232 1 Analog Output

6ES7 232-4HA30-0XB0O

HMI devices

Order Number

KTP400 Basic (Mono, PN)

6AV6 647-0AA11-3AX0

KTP600 Basic (Mono, PN)

6AV6 647-0AB11-3AX0

KTP600 Basic (Color, PN)

6AV6 647-0AD11-3AX0

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

329

Order numbers

HMI devices

Order Number

KTP1000 Basic (Color, PN)

6AV6 647-0AF11-3AX0

TP1500 Basic (Color, PN)

6AV6 647-0AG11-3AX0

Programming package

Order Number

STEP 7 Basic v10.5

6ES7 822-0AA0-0YAOQ

Memory cards, other hardware, and spare parts

Order Number

Memory Cards SIMATIC MC 2 MB 6ES7 954-8LB00-0AA0
SIMATIC MC 24 MB 6ES7 954-8LF00-0AAD
Other hardware PSU 1200 power supply 6EP1 332-1SH71

CSM 1277 Ethernet switch - 4 ports

6GK7 277-1AA00-0AAO

Simulator (1214C/1211C - 8 position)

6ES7 274-1XF30-0XA0

Simulator (1214C - 14 position)

6ES7 274-1XH30-0XA0

Spare Parts Connector block, 7 terminal, Tin

6ES7 292-1AG30-0XA0

Connector block, 8 terminal, Tin (4/pk)

6ES7 292-1AH30-0XA0

Connector block, 11 terminal, Tin (4/pk)

6ES7 292-1AL30-0XA0

Connector block, 12 terminal, Tin (4/pk)

6ES7 292-1AM30-0XA0

Connector block, 14 terminal, Tin (4/pk)

6ES7 292-1AP30-0XA0

Connector block, 20 terminal, Tin (4/pk)

6ES7 292-1AV30-0XA0

Connector block, 3 terminal, Gold (4/pk)

6ES7 292-1BC0-0XA0

Connector block, 6 terminal, Gold (4/pk)

6ES7 292-1BF30-0XA0

Connector block, 7 terminal, Gold (4/pk)

6ES7 292-1BG30-0XA0

Connector block, 11 terminal, Gold (4/pk)

6ES7 292-1BL30-0XA0

Documentation Order Number

S7-1200 Programmable Controller System Manual German 6ES7 298-8FA30-8AHO
English 6ES7 298-8FA30-8BHO
French 6ES7 298-8FA30-8CHO
Spanish 6ES7 298-8FA30-8DHO
Italian 6ES7 298-8FA30-8EHO
Chinese 6ES7 298-8FA30-8FHO

S7-1200 Easy Book German B6ES7 298-8FA30-8AQ0
English 6ES7 298-8FA30-8BQ0O
French 6ES7 298-8FA30-8CQ0
Spanish 6ES7 298-8FA30-8DQO
Italian 6ES7 298-8FA30-8EQO
Chinese 6ES7 298-8FA30-8FQ0

330

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Index

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01 331

A

Absolute value (ABS) instruction, 104
AC

Inductive loads, 33
Accessing the online help, 14
Add (ADD) instruction, 101
Analog I/O status indicators, 274
Analog signal module specifications, 310
Analog signal module voltage, 311
AND instruction, 118
ATEX approval, 284
ATTACH interrupt instruction, 165

B

Baud rate, 240
Bit logic, 35
Block
Types, 35
Block call
Basics, 35
Calling as single instance or multi-instance, 78
Block move (MOVE_BLK) instruction, 108
Blocks
data blocks (DBs), 35
function blocks (FBs), 35
functions (FCs), 35
organization blocks (OBs), 35
Break, 243/ 244
Bus connector, 11

C

Calendar instructions, 124
CAN_DINT time delay interrupt instruction, 168
CE approval, 283
Ceiling (CEIL) instruction, 114
Character position
message length, 247
Character sequence
message end, 246
message start, 245
Clearance for installation, 19
Clock
time-of-day clock, 46
Clock instructions, 126
read local time (RD_LOC_T), 126
read system time (RD_SYS_T), 126
write system time (WR_SYS_T), 126

CM 1241 RS232 specifications, 321
CM 1241 RS485 specifications, 320
Code block

DB (data block), 79

FB (function block), 78

FC (function), 78

Know-how protection, 82
Code blocks, 75
Communication

flow control, 241

hardware connection, 209

IP address, 70, 218

libraries, 239

load, 44

network, 208

polling architecture, 248

send and receive parameters, 242
Communication interfaces

configuration, 240

programming, 248
Communication module

Add modules, 66

Add new device, 64

Device configuration, 53
Communication module (CM)

Comparison chart, 10

Installation, 27

Overview, 12

Removal, 27
Communication modules

RS232 and RS485, 239
Communications module (CM), 250

data reception, 264

power requirements, 325

specifications, 320
Communications module (CM), USS library, 175
Compare instructions, 99
Comparison chart

CPU models, 10

HMI devices, 17
Comparison chart of modules, 10
CONCAT instruction, 137
Configuration

communication interfaces, 240

Cycle time, 44

HMI to CPU, 223

Industrial Ethernet port, 70, 218

IP address, 70, 218

PLC to PLC communication, 224

ports, 240

PROFINET, 70, 218

receive message, 244

Startup parameters, 37

Index

Configuring parameters

CPU, 585

Ethernet port, 70, 218

modules, 67

PROFINET, 70 218
Connector

Installation and Removal, 29
Contact information, 3
Context-sensitive help, 14
Convert instructions, 113
Copy protection, 82
Counter instructions, 94
CPU

1211C specifications, 288

1211C wiring diagrams, 292

1212C specifications, 293

1212C wiring diagrams, 296

1214C specifications, 298

1214C wiring diagrams, 301

Add modules, 66

Add new device, 64

Comparison chart, 10

configuring communication to HMI, 222

configuring multiple, 224
Configuring parameters, 65
Cycle time, 44

Device configuration, 63
download to device, 221
Ethernet port, 70, 218
going online, 275
Grounding, 31

Inductive loads, 33
Installation procedures, 24
IP address, 70} 218
Isolation guidelines, 31
Lamp loads, 33

MAC address, 235
Network connection, 69
online, 276

Operating modes, 37

operating panel for online, 277

Overview, 9

Password protection, 48
Power budget, 20
power requirements, 325
PROFINET, 70, 218
Program execution, 37
Security levels, 48
Signal board (SB), [11
Startup parameters, 37
Startup processing, 39
STOP mode, 280

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

Thermal zone, 22
watch tables, 278
Wiring guidelines, 30, 32

Creating a network connection, 69

C-Tick approval, 285
CTRL_PWM instruction, 172
CTS, 241

cULus approval, 284
Customer support, 3

Cycle time, 43/ 44

Cycle time monitoring, online CPU, 277

D

Data block
Global data block, 49, 79
Instance data block, 49
organization block (OB), [76
Data block (DB), 79
Data handling block (DHB), 79
Data transmission, initiating, 262
Data types, 54
Arrays, 56
STRING, 55
Date instructions, 124
DB (data block), 79
DC
Inductive loads, 33
DEC (decrement) instruction, 104
Decode (DECO) instruction, 119
DELETE instruction, 137
Designing a PLC system, 73, 74

DETACH interrupt instruction, 165

Device configuration, 63, 209
Add modules, 56
Add new device, 64
Configuring the CPU, 65
Configuring the modules, 57
Ethernet port, 70, 218
Network connection, 69
PROFINET, 70, 218

Diagnostics buffer, 45, 278

Digital I/O status indicators, 274

Digital signal board (SB) specifications, 316

DIN rail, 23

DIS_AIRT alarm interrupt instruction, 170

Displaying the contents and index (online help), 15

Divide (DIV) instruction, 101
Documentation, 14
Download to device, 221

333

Index

E

Electromagnetic compatibility (EMC), 286
EN and ENO (power flow), 81
EN_AIRT alarm interrupt instruction, 170
Encode (ENCO) instruction, 119
End conditions, 246
End message character, 246
Environmental conditions, 286
Environments

industrial, 285

residential, 285
Errors

Diagnostic errors, 42

PtP instructions, 268

Time errors, 42
Ethernet

IP address, 70| 218

Network connection, 69
Ethernet communication, 207
Ethernet instructions

TCON, 156

TDISCON, 156

TRCV, 156

TRCV_C, 151

TSEND, 156

TSEND_C, 151
Event execution, 40

Expanding the capabilities of the S7-1200, 10

Expanding the online help window, 15

F

FB (function block), 78
FBD (function block diagram), 81
FC (function), 78
Fill (FILL_BLK) instruction, 111
FIND instruction, 137
Floating-point math instruction, 107
Floor (FLOOR) instruction, 114
Flow control, 241

configuration, 241
FM approval, 284
Freeport protocol, 239
Function (FC), 78
Function block (FB)

Initial value, 78
Function block (FB)

Instance data block, 78
Function block (FB)

Output parameters, 78

334

G

General technical specifications), 283
GET_ERR_ED instruction, 147
GET_ERROR instruction, 147

Getting started

Cascading tool tips, 14
Context-sensitive help, 14
Documentation, 14
Information system, 14

Online help, 14

Portal and project views, 13

Rollout help, 14
Tool tips, 14

Global data block, 49, 79

Global library
USS, 175

Guidelines
Grounding, 31

Inductive loads, 33

Installation, 19

Installation procedures, 23

Isolation, 31
Lamp loads, 33

Wiring guidelines, 30, 32

H

Hardware configuration, 63

Add modules, 66

Add new device, 64
Configuring the CPU, |65
Configuring the modules, 57
Ethernet port, 70, 218
Network connection, 69
PROFINET, 70, 218
Hardware flow control, 241

Help, 14

Displaying the contents and index, 15

Expanding, 15
Printing, 16
Undocking, 15

High-speed counter (HSC) instruction, 97

HMI

configuring PROFINET communication, 222

HMI devices

Network connection, 69

Overview, 17
Hotline, 3

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Index

I/0
Addressing, 53
analog status indicators, 274
digital status indicators, 274
Inductive loads, 33
I/O modules
watch tables, 278
Idle line, 243, 244
INC (increment) instruction, 104
Inductive loads, 33
Information system, 14
Displaying the contents and index, 15
Expanding, 15
Printing, 16
Undocking, 15
Input simulators, 322
In-range instruction, 100
INSERT instruction, 137
Installation
Clearance, 19
Communication module (CM), 27
CPU, 24
Grounding, 31
Guidelines, 19
Inductive loads, 33
Isolation guidelines, 31
Lamp loads, 33
Mounting dimensions, 22
Overview, 19
Power budget, 20
Signal board (SB), 28
Signal module (SM), 25
STEP 7, 12
Terminal block connector, 29
Thermal zone, 22
TIA Portal, 12
Wiring guidelines, 30/ 32
Instance data block, 49
Instructions
absolute value (ABS), 104
add (ADD), 101
AND, 118
bit logic, 85
block move (MOVE_BLK), 108
calendar, 124
ceiling, 114
clock, 126
clock: read local time (RD_LOC_T), 126
clock: read system time (RD_SYS_T), 126
clock: write system time (WR_SYS_T), 126
compare, 99

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

convert, 113

counter, 94
CTRL_PWM), 172

date, 124

DEC (decrement), 104
decode (DECO), 119
divide (DIV), 101

encode (ENCO), 119

fill (FILL_BLK), 111
floating-point math, 107
floor (FLOOR), 114
GET_ERRL_ID, 147
GET_ERROR, 1147, 151
high-speed counter (HSC), 97
INC (increment), 104
in-range, 100

interrupt: ATTACH, 165
interrupt: CAN_DINT, 168
interrupt: DETACH, 165
interrupt: DIS_AIRT, 170
interrupt: EN_AIRT, 170
interrupt: SRT_DINT, 168
invert (INV), (119

jump (JMP), 116

label, 116

limit, 106

MAX (maximum), 105
MIN (minimum), 105
MOD (modulo), 102
move, 108

multiplex (MUX), 120
multiply (MUL), 101

NEG (negation), 103
negative edge, 89
normalize (NORM), 115
not OK, 101

OK, 101

OR, 118

out-of-range, 100
PID_Compact, 171
PORT_CFG (port configuration), 252
positive edge, 89
RCV_CFG (receive configuration), 255
RCV_PtP (receive Point-to-Point), 264
RCV_RST (receiver reset), 265
RE_TRIGR, 43, 146
reset, 87

return value (RET), 117
rotate left (ROL), 123
rotate right (ROR), 123
round, 113

scale (SCALE_X), 115

335

Index

select (SEL), 120 Interrupts

SEND_CFG (send configuration), 254 Overview, 35

SEND_PTP (send Point-to-Point data), 262 Invert (INV) instruction, 119

set, 87 IP address, 70, 71, 218, 219
SGN_GET (get RS232 signals), 266 assigning, 210, 220

SGN_SET (set RS232 signals), 267 assigning online, 213

shift left (SHL), 122 configuring, 70, 218

shift right (SHR), 122 IP address, setting the online CPU, 276
STP (stop PLC scan cycle), 147 IP router, 71,1219

string operations: CONCAT, 137 Isolation guidelines, 31

string operations: DELETE, 137

string operations: FIND, 137

string operations: INSERT, 137 J

string operations: LEFT, 137 . .

string operations: LEN (string length), 137 jquE;l)\l(Ths/ltIZr’l;?:;’tr:u::t1|gn 116
string operations: MID, 137 '
string operations: REPLACE, 137

string operations: RIGHT, 137 K
string to value: S_CONV, 128
string to value: STRG_VAL, 128 Know-how protection, 82
subtract (SUB), 101
swap, 112
T_ADD, 124 L
T_CONV, f124 Label instruction, 116
T_DIFF, 124 .
LAD (ladder logic), 80

T_SUB, 124
TCON. 156 Lamp loads, 33

y LED indicators, 250, 273
TDISCON, 156 : .
time. 124 LEFT instruction, 137
. LEN instruction, 137
timer, 91

Length

message, 247
Length m, 247
Length n, 247
Limit instruction, 106
Linear programming, 74

timer: RT (reset timer), 91

timer: TOF (off-delay timer), 91

timer: TON (on-delay timer), 91

timer: TONR (on-delay retentive timer), 91
timer: TP (pulse timer), 91

TRCV, 156
TRCV_C, 151, 231
truncate (TRUNC), 113 M
TSEND, [156
TSEND_C, 151, 227 MAC address, 70, 218, 235
uninterruptible fill (UFILL_BLK), 111 Maritime approval, 285
uninterruptible move (UMOVE_BLK), 108 Master polling architecture, 249
USS status codes, 183 Math instructions, 101
USS_DRV, 177 MAX (maximum) instruction, 105
USS_PORT, 180 Maximum message length, 246
USS_RPM, 180 Memory
USS_WPM, 182 clock memory, 46
value to string: S_CONV, 128 | (process image input), 51
value to string: VAL_STRG, 128 L (local memory), 49
XOR (exclusive OR), 118 load memory, 45, 57
Inter-character gap, 246 M (bit memory), 52
Interrupt latency, 41 Q (process image output), 51

S7-1200 Programmable controller
336 System Manual, 04/2009, ASE02486680-01

Index

retentive memory, 45, 57
system memory, 46
Temp memory, 52
work memory, 45, 57
Memory card specifications, 321
Memory card, using, 60
Memory locations, 49, 51
Memory usage monitoring, online CPU, 277
Message configuration
instructions, 248
receive, 244
transmit, 243
Message end, 246
Message length, 246
Message start, 244
MID instruction, 137
MIN (minimum) instruction, 105
Miscellaneous PtP parameter errors, 271
MOD (modulo) instruction, 102
Modules
Communication module (CM), 12
Comparison chart, 10
Configuring parameters, 67
Signal board (SB), [11
Signal module (SM), 11
Thermal zone, 22
Monitoring the program, 83
Mounting
Clearance, 19
Communication module (CM), 27
CPU, 24
Dimensions, 22
Grounding, 31
Guidelines, 19
Inductive loads, 33
Isolation, 31
Lamp loads, 33
Overview, 23
Signal board (SB), 28
Signal module (SM), 25
Terminal block connector, 29
Thermal zone, 22
Wiring guidelines, 30/ 32
Move instruction, 108
Multiplex (MUX) instruction, 120
Multiply (MUL) instruction, 101

N

NEG (negation) instruction, 103
Negative edge instruction, 39
Network communication, 208

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

Network connection, 69

multiple CPUs, 226
Network time protocol (NTP), 236
Normalize (NORM) instruction, 115
Not OK instruction, 101
Numbers

Floating point, 55

Real, 55

O

Off-delay (TOF) instruction, 91
OK instruction, 101
On-delay delay (TON) instruction, 91
On-delay retentive (TONR) instruction, 91
Online CPU, 276
cycle time monitoring, 277
memory usage monitoring, 277
operating panel, 277
Online help, 14
Displaying the contents and index, 15
Expanding the help window, 15
Printing, 16
Undocking, 15
Online, going online, 275
OR instruction, 118
Organization block
Call, 35
configuring operation, 77
creating, 77
Function, 35
multiple cyclic, 77
Priority classes, 35
processing, 76
Out-of-range instruction, 100
Output parameters, 78

P

Parameter assignment, 78
Parameters configuration
receive, 232
transmit, 228
Parity, 241
Password protection
Code block, 82
CPU, 48
PID_Compact instruction, 171
PLC
Overview, 9
system design, 73

337

Index

using blocks, 74
Point-to-point communication, 239
Point-to-Point programming, 248
Polling architecture, 248
Port configuration, 240
instructions, 248
Port configuration errors, 269

PORT_CFG (port configuration) instruction, 252

Portal view, 13
Add modules, 56
Add new device, 64
Configuring the CPU, 65
Configuring the Ethernet port, 70, 218
Configuring the modules, 67
PROFINET, 70, 218
Positive edge instruction, 89
Power budget, 20, 325
sample, 327, 328
Power requirements
calculating, 327, 328
Printing the help topics, 16
Priorities in processing, 40
Priority class
Overview, 35
PROFINET, 207
IP address, 70| 218
Network connection, 69
testing a network, 220
PROFINET interface
Ethernet address properties, 71, 219
Time synchronization properties, 237
Program execution, 36
Program structure, 75
Programming
FBD (function block diagram), 81
LAD (ladder), 80
Linear, 74
power flow (EN and ENO), 81
PtP instructions, 248
Structured, 74
Project
Protecting a code block, 32
Restricting access to a CPU, 48
Project view, 13
Add modules, 56
Add new device, 64
Configuring the CPU parameters, 65
Configuring the Ethernet port, 70, 218
Configuring the modules, 67
Device configuration, 63
Network connection, 69
PROFINET, 70, 218

338

Protection class, 287
Protection level
Code block, 82
CPU, 48
Protocol
communication, 239
freeport, 239
PTO (pulse train output), 173
PtP communication, 239
PtP instruction return values, 268
PtP programming, 248
Pulse delay (TP) instruction, 91
Pulse train output (PTO), 173
PWM
CTRL_PWM instruction, 172

Q
Queuing, 40

R
Rated voltages, 287

RCV_CFG (receive configuration) instruction, 255
RCV_PTP (receive Point-to-Point) instruction, 264

RCV_RST (receiver reset) instruction, 265
RE_TRIGR instruction, 146
Receive configuration errors, 270
Receive message configuration, 244
Receive parameters configuration, 232
Receive runtime return values, 271
Relay electrical service life, 288
REPLACE instruction, 137
Reset instruction, 87
Reset timer (RT) instruction, 91
Return value (RET) instruction, 117
Return values

PtP instructions, 268
RIGHT instruction, 137
Rollout help, 14
Rotate left (ROL) instruction, 123
Rotate right (ROR) instruction, 123
Round instruction, 113
Router IP address, 71, 219

RS232 and RS485 communication modules, 239

RT (reset timer) instruction, 91
RTS, 241

RTS always on, 242

RTS Off delay, 243

RTS On delay, 243

RTS switched, 241

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Index

RUN mode, 37, 39
RUN-to-STOP transition, 48

S

S_CONV instruction, 128
S7-1200
Add modules, 66
Add new device, 64
Clearance, 19
Communication module (CM), 12
Comparison chart of CPU models, 10
Configuring the CPU parameters, 65
Configuring the modules, 67
CPU, 9
CPU installation procedures, 24
Cycle time, 44
Device configuration, 63
Ethernet port, 70, 218
Expanding the capabilities, 10
Grounding, 31
HMI devices, 17
Inductive loads, 33
installing a CM, 27
installing an SB, 28
installing an SM, 25
IP address, 70} 218
Isolation guidelines, 31
Lamp loads, 33
Mounting dimensions, 22
Network connection, 69
Overview of installation, 23
Password protection, 48
Power budget, 20
PROFINET, 70, 218
Signal board (SB), [11
Signal module (SM), 11
Startup parameters, 37
Terminal block connector, 29
Thermal zone, 22
Wiring guidelines, 30/ 32
SB 1223 specifications, 316/ 318
SB 1223 wiring diagram, 317
SB 1232 wiring diagram, 319
Scale (SCALE_X instruction, 115
Scan cycle time, 43
Security
Code block, 82
CPU, 48
Select (SEL) instruction, 120
Send message configuration, 243
Send parameters configuration, 228

S7-1200 Programmable controller
System Manual, 04/2009, A5E02486680-01

SEND_CFG (send configuration) instruction, 254
SEND_PtP (send Point-to-Point data) instruction, 262
Serial communication, 239
Set instruction, 87
SGN_GET (get RS232 signals) instruction, 266
SGN_SET (set RS232 signals) instruction, 267
Shift left (SHL) instruction, 122
Shift right (SHR) instruction, 122
Signal board (SB)

Add modules, 56
Comparison chart, 10
Device configuration, 63
Installation, 28
Overview, 11

power requirements, 325
Removal, 28

Signal board (SM)

Add new device, 64

Signal handling errors, 270
Signal module (SM)

Add modules, 56

Add new device, 64
Comparison chart, 10
Device configuration, 63
Installation, 25
Overview, 11

power requirements, 325
Removal, 25

Signal modules

SM 1221 specifications, 303
SM 1222 specifications, 305
SM 1223 specifications, 307

Single instance

Example, 79

Slave polling architecture, 249
Software flow control, 242
Specifications

Analog dignal module voltage, 311
Analog signal modules, 310
ATEX approval, 284

CE approval, 283

communication module CM 1241 RS232, 321
communication module CM 1241 RS485, 320

CPU 1211C, 288

CPU 1212C, 293

CPU 1214C, 298

C-Tick approval, 285

cULus approval, 284

digital signal boards (SBs), 316
electromagnetic compatibility (EMC), 286
environmental conditions, 286
environments, 285

339

Index

FM approval, 284
general technical, 283
input simulators, 322
maritime approval, 285
memory cards, 321
protection, 287
rated voltages, 287
relay electrical service life, 288
SB 1223, 316
SB 1223, 318
SM 1221 signal module, 303
SM 1221 wiring diagram, 304
SM 1222 signal module, 305
SM 1222 wiring diagram, 306
SM 1223 signal module, 307
SM 1223 wiring diagram, 308
wiring diagrams: SM 1231, 1232, 1234, 314
SRT_DINT time delay interrupt instruction, 168
Start conditions, 244
Start message character, 245
Startup parameters, 37
STEP 7
Add modules, 56
Add new device, 64
Configuring the CPU, 65
Configuring the modules, 67
Device configuration, 63
Ethernet port, 70, 218
Installation, 12
Network connection, 69
Portal view, 13
PROFINET, 70, 218
Project view, 13
Stop bits, 241
STOP mode, 37/ 280
STP (stop PLC scan cycle) instruction, 147
STRG_VAL instruction, 128
String data type, 55
String to value instructions, 128
Structured programming, 74/ 75
Subnet mask, 70, 218
Subtract (SUB) instruction, 101
Support, 3
Swap instruction, 112

T

T_ADD instruction, 124
T_CONV instruction, 124
T_DIFF instruction, 124
T_SUB instruction, 124
TCON instruction, 156

340

TCP/IP communication, 207
TDISCON instruction, 156
Technical specifications, 283
Technical support, 3
Terminal block connector

Installation, 29
Testing the program, 83
Thermal zone, 22
TIA Portal

Add modules, 66

Add new device, 64

Configuring the CPU, |65

Configuring the modules, 57

Device configuration, 53

Ethernet port, 70, 218

Installation, 12

Network connection, 69

Portal view, 13

PROFINET, 70, 218

Project view, 13
Time instructions, 124
Time of day, setting the online CPU, 276
Timer instructions, 91
TOF (off-delay) timer instruction, 91
TON (on-delay delay) timer instruction, 91
TONR (on-delay retentive) timer instruction, 91
Tool tips, 14
TP (pulse delay) timer instruction, 91
Transmission block (T-block), 226
Transmit configuration errors, 269
Transmit message configuration, 243
Transmit runtime errors, 270
TRCV instruction, 156
TRCV_C instruction, 151} 231
TRCV_C instruction configuration, 232
Truncate (TRUNC) instruction, 113
TSAP (transport service access points, 229
TSAP (transport service access points), 233
TSEND instruction, 156
TSEND_C instruction, 151 227
TSEND_C instruction configuration, 228

U

Undocking the online help, 15

Uninterruptible fill (UFILL_BLK) instruction, 111
Uninterruptible move (UMOVE_BLK) instruction, 108
USS protocol library, 175

USS status codes, 183

USS_DRYV instruction, 177

USS_PORT instruction, 180

USS_RPM instruction, 180

S7-1200 Programmable controller
System Manual, 04/2009, ASE02486680-01

Index

USS_WPM instruction, 182

\Y

VAL_STRG instruction, 128
Value to string instructions, 128

w

Wait time, 241
Watch tables, 83 278
Watchdog, 146
Wiring diagrams
CPU 1211C, 292
CPU 1212C, 296
CPU 1214C, 301
SB 1223, 317
SB 1232, 319
SM 1221 signal module, 304
SM 1222 signal module, 306
SM 1223 signal module, 308
SM 1231, 1232, 1234, 314
Wiring guidelines
Grounding, 31
Prerequisites, 30

X
XON / XOFF, 242

XOR (exclusive OR) instruction, 118

S7-1200 Programmable controller

System Manual, 04/2009, ASE02486680-01

341

	Title
	Product overview
	Introducing the S7-1200 PLC
	Signal boards
	Signal modules
	Communication modules
	TIA Portal software
	Different views to make the work easier
	Help when you need it

	Display panels

	Installation
	Installation and removal procedures
	Installing and removing the CPU
	Installing and removing a signal module
	Installing and removing a communication module
	Installing and removing a signal board
	Removing and reinstalling the S7-1200 terminal block connect

	Wiring guidelines

	PLC concepts
	Execution of the user program
	Operating modes of the CPU
	Event execution priorities and queuing
	CPU memory
	Password protection for the S7-1200 CPU

	Data storage, memory areas and addressing
	Data types
	Saving and restoring memory
	Understanding how the S7-1200 saves and restores data
	Using the memory card as a "Program" card
	Using the memory card as a "Transfer" card

	Device configuration
	Inserting a CPU
	Configuring the operation of the CPU
	Adding modules to the configuration
	Configuring the parameters of the modules
	Creating a network connection
	Configuring a permanent IP address

	Programming concepts
	Guidelines for program design
	Structuring your user program
	Using blocks to structure your program
	Organization block (OB)
	Function (FC)
	Function block (FB)
	Data block (DB)

	Selecting the programming language

	Copy protection
	Debugging and testing the program

	Programming instructions
	Basic instructions
	Bit logic
	Set and reset instructions
	Positive and negative edge instructions

	Timers
	Counters
	CTRL_HSC instruction

	Compare
	Math
	MOD instruction

	Move
	Swap instruction

	Convert
	Scale and normalize instructions

	Program control
	Logical operations
	Shift and Rotate

	Extended instructions
	Clock and calendar instructions
	String and character instructions
	String conversion instructions
	String operation instructions

	Program control instructions
	Reset scan cycle watchdog instruction
	Stop scan cycle instruction
	Get Error instructions

	Communications instructions
	Open Ethernet Communication
	Point-to-Point instructions

	Interrupt instructions
	Attach and detach instructions
	Start and cancel time delay interrupt instructions
	Disable and Enable alarm interrupt instructions

	PID control
	Motion control instructions
	Pulse instruction
	CTRL_PWM instruction

	Global library instructions
	USS
	Requirements for using the USS protocol
	USS_DRV instruction
	USS_PORT instruction
	USS_RPM instruction
	USS_WPM instruction
	USS status codes

	MODBUS
	MB_COMM_LOAD
	MB_MASTER
	MB_SLAVE

	PROFINET
	Communication with a programming device
	Establishing the hardware communications connection
	Configuring the devices
	Assigning Internet Protocol (IP) addresses
	Assigning IP addresses to programming and network devices
	Assigning a temporary IP address online
	Configuring a permanent IP address

	Testing the PROFINET network

	HMI-to-PLC communication
	Configuring the logical network connections between an HMI a

	PLC-to-PLC communication
	Configuring the logical network connections between two CPUs
	Configuring transmit (send) and receive parameters
	Configuring the TSEND_C instruction transmit (send) paramete
	Configuring the TRCV_C instruction receive parameters

	Reference Information
	Locating the Ethernet (MAC) address on the CPU
	Configuring Network Time Protocol synchronization

	Point-to-Point (PtP) communications
	Using the RS232 and RS485 communication modules
	Configuring the communication ports
	Managing flow control
	Configuring the transmit (send) and receive parameters
	Programming the PtP communications
	Polling architecture

	Point-to-Point instructions
	Common parameters for Point-to-Point instructions
	PORT_CFG instruction
	SEND_CFG instruction
	RCV_CFG instruction
	SEND_PTP instruction
	RCV_PTP instruction
	RCV_RST instruction
	SGN_GET instruction
	SGN_SET instruction

	Errors

	Online and diagnostic tools
	Status LEDs
	Going online and connecting to a CPU
	Setting the IP address and time of day
	CPU operator panel for the online CPU
	Monitoring the cycle time and memory usage
	Displaying diagnostic events in the CPU
	Watch tables for monitoring the user program
	Technical specifications
	Calculating a power budget
	Order numbers

	Index

